Citation: | HUANG Xiaoge, DENG Xuesong, CHEN Qianbin, ZHANG Jie. Asynchronous Federated Learning via Blockchain in Edge Computing Networks[J]. Journal of Electronics & Information Technology, 2024, 46(1): 195-203. doi: 10.11999/JEIT221517 |
[1] |
ZHANG Jing and TAO Dacheng. Empowering things with intelligence: A survey of the progress, challenges, and opportunities in artificial intelligence of things[J]. IEEE Internet of Things Journal, 2021, 8(10): 7789–7817. doi: 10.1109/JIOT.2020.3039359
|
[2] |
JIANG Chunxiao, ZHANG Haijun, REN Yong, et al. Machine learning paradigms for next-generation wireless networks[J]. IEEE Wireless Communications, 2017, 24(2): 98–105. doi: 10.1109/MWC.2016.1500356WC
|
[3] |
LIM W Y B, LUONG N C, HOANG D T, et al. Federated learning in mobile edge networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 2031–2063. doi: 10.1109/COMST.2020.2986024
|
[4] |
LI Tian, SAHU A K, TALWALKAR A, et al. Federated learning: Challenges, methods, and future directions[J]. IEEE Signal Processing Magazine, 2020, 37(3): 50–60. doi: 10.1109/MSP.2020.2975749
|
[5] |
IEEE Std 3652.1-2020 IEEE guide for architectural framework and application of federated machine learning[S]. IEEE, 2021.
|
[6] |
SHEN Xin, LI Zhuo, and CHEN Xin. Node selection strategy design based on reputation mechanism for hierarchical federated learning[C]. 2022 18th International Conference on Mobility, Sensing and Networking (MSN), Guangzhou, China, 2022: 718–722.
|
[7] |
LIU Jianchun, XU Hongli, WANG Lun, et al. Adaptive asynchronous federated learning in resource-constrained edge computing[J]. IEEE Transactions on Mobile Computing, 2023, 22(2): 674–690. doi: 10.1109/TMC.2021.3096846
|
[8] |
LI Zonghang, ZHOU Huaman, ZHOU Tianyao, et al. ESync: Accelerating intra-domain federated learning in heterogeneous data centers[J]. IEEE Transactions on Services Computing, 2022, 15(4): 2261–2274. doi: 10.1109/TSC.2020.3044043
|
[9] |
CHEN Yang, SUN Xiaoyan, and JIN Yaochu. Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(10): 4229–4238. doi: 10.1109/TNNLS.2019.2953131
|
[10] |
CAO Mingrui, ZHANG Long, and CAO Bin. Toward on-device federated learning: A direct acyclic graph-based blockchain approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(4): 2028–2042. doi: 10.1109/TNNLS.2021.3105810
|
[11] |
FENG Lei, YANG Zhixiang, GUO Shaoyong, et al. Two-layered blockchain architecture for federated learning over the mobile edge network[J]. IEEE Network, 2022, 36(1): 45–51. doi: 10.1109/MNET.011.2000339
|
[12] |
QIN Zhenquan, YE Jin, MENG Jie, et al. Privacy-preserving blockchain-based federated learning for marine internet of things[J]. IEEE Transactions on Computational Social Systems, 2022, 9(1): 159–173. doi: 10.1109/TCSS.2021.3100258
|
[13] |
XU Chenhao, QU Youyang, LUAN T H, et al. An efficient and reliable asynchronous federated learning scheme for smart public transportation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6584–6598. doi: 10.1109/TVT.2022.3232603
|
[14] |
LI Qinbin, HE Bingsheng, and SONG D. Model-contrastive federated learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 10708–10717.
|
[15] |
范盛金. 一元三次方程的新求根公式与新判别法[J]. 海南师范学院学报(自然科学版), 1989, 2(2): 91–98.
FAN Shengjin. A new extracting formula and a new distinguishing means on the one variable cubic equation[J]. Natural Science Journal of Hainan Normal College, 1989, 2(2): 91–98.
|