Citation: | LU Di, YU Guoliang. Research on Blind Super-resolution Reconstruction with Double Discriminator[J]. Journal of Electronics & Information Technology, 2024, 46(1): 277-286. doi: 10.11999/JEIT221502 |
[1] |
陶状, 廖晓东, 沈江红. 双路径反馈网络的图像超分辨重建算法[J]. 计算机系统应用, 2020, 29(4): 181–186. doi: 10.15888/j.cnki.csa.007344
TAO Zhuang, LIAO Xiaodong, and SHEN Jianghong. Dual stream feedback network for image super-resolution reconstruction[J]. Computer Systems &Applications, 2020, 29(4): 181–186. doi: 10.15888/j.cnki.csa.007344
|
[2] |
陈栋. 单幅图像超分辨率重建算法研究[D]. [硕士论文], 华南理工大学, 2020.
CHEN Dong. Research on single image super-resolution reconstruction algorithm[D]. [Master dissertation], South China University of Technology, 2020.
|
[3] |
KAPPELER A, YOO S, DAI Qiqin, et al. Video super-resolution with convolutional neural networks[J]. IEEE Transactions on Computational Imaging, 2016, 2(2): 109–122. doi: 10.1109/TCI.2016.2532323
|
[4] |
JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 2017–2025.
|
[5] |
IRANI M and PELEG S. Super resolution from image sequences[C]. [1990] Proceedings. 10th International Conference on Pattern Recognition, Atlantic City, USA, 1990: 115–120.
|
[6] |
STARK H and OSKOUI P. High-resolution image recovery from image-plane arrays, using convex projections[J]. Journal of the Optical Society of America A, 1989, 6(11): 1715–1726. doi: 10.1364/JOSAA.6.001715
|
[7] |
DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]. 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 184–199.
|
[8] |
DONG Chao, LOY C C, and TANG Xiaoou. Accelerating the super-resolution convolutional neural network[C]. 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 391–407.
|
[9] |
PARK S J, SON H, CHO S, et al. SRFeat: Single image super-resolution with feature discrimination[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 455–471.
|
[10] |
ZHANG Yulun, LI Kunpeng, LI Kai, et al. Image super-resolution using very deep residual channel attention networks[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 294–310.
|
[11] |
LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 105–114.
|
[12] |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, USA, 2017: 1132–1140.
|
[13] |
WANG Xintao, YU Ke, WU Shixiang, et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C]. European Conference on Computer Vision, Munich, Germany, 2018: 63–79.
|
[14] |
SOH J W, PARK G Y, JO J, et al. Natural and realistic single image super-resolution with explicit natural manifold discrimination[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 8114-8123.
|
[15] |
WANG Xintao, XIE Liangbin, DONG Chao, et al. Real-ESRGAN: Training real-world blind super-resolution with pure synthetic data[C]. 2021 IEEE/CVF International Conference on Computer Vision Workshops, Montreal, Canada, 2021: 1905–1914.
|
[16] |
SAJJADI M S M, SCHÖLKOPF B, and HIRSCH M. EnhanceNet: Single image super-resolution through automated texture synthesis[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 4501–4510.
|
[17] |
ZHANG Kai, LI Yawei, ZUO Wangmeng, et al. Plug-and-play image restoration with deep denoiser prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6360–6376. doi: 10.1109/TPAMI.2021.3088914
|
[18] |
HUANG Huimin, LIN Lanfen, TONG Ruofeng, et al. UNet 3+: A full-scale connected UNet for medical image segmentation[C]. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020: 1055–1059.
|
[19] |
ZHOU Zongwei, SIDDIQUEE M M R, TAJBAKHSH N, et al. Unet++: A nested U-Net architecture for medical image segmentation[M]. Stoyanov D, Taylor Z, Carneiro G, et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 3–11.
|
[20] |
MITTAL A, SOUNDARARAJAN R, and BOVIK A C. Making a “Completely Blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209–212. doi: 10.1109/LSP.2012.2227726
|