Advanced Search
Volume 45 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
JIANG Jiewei, LIU Shanghui, JIN Ku, WEI Xumeng, GONG Jiamin. An Image Fusion Algorithm Based on Ant Lion Optimized Maximum Entropy Segmentation and Guided Filtering[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1391-1400. doi: 10.11999/JEIT221499
Citation: JIANG Jiewei, LIU Shanghui, JIN Ku, WEI Xumeng, GONG Jiamin. An Image Fusion Algorithm Based on Ant Lion Optimized Maximum Entropy Segmentation and Guided Filtering[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1391-1400. doi: 10.11999/JEIT221499

An Image Fusion Algorithm Based on Ant Lion Optimized Maximum Entropy Segmentation and Guided Filtering

doi: 10.11999/JEIT221499
Funds:  The National Natural Science Foundation of China (61775180, 62276210), The Natural Science Basic Research Program of Shaanxi (2022JM-380)
  • Received Date: 2022-12-02
  • Rev Recd Date: 2022-12-23
  • Available Online: 2022-12-28
  • Publish Date: 2023-04-10
  • Traditional fusion algorithms of infrared and visible images often have defects such as insufficient target extraction and loss of details, which lead to unsatisfactory fusion effects, and the fused image can not be applied to target detection, tracking or recognition. Therefore, a fusion method of infrared and visible images based on guided filtering and improved maximum Shannon entropy segmentation method using Ant Lion Optimization algorithm (ALO) is proposed. First, Ant Lion Optimized Maximum Entropy Segmentation (ALO-MES) algorithm is used to extract the target from infrared image. Then, the Non-Subsampled Shearlet Transform (NSST) is performed on the infrared and visible images to obtained the low frequency and high frequency sub-bands, and conduct guided filtering for obtained sub-bands. The low-frequency fusion coefficient is obtained from the extracted target image and the enhanced infrared and visible low-frequency components through the fusion rule based on ALO-MES. And the high-frequency fusion coefficient is obtained by the enhanced high-frequency sub-bands components through Dual-Channel Spiking Cortical Model (DCSCM). Finally, the fusion image is obtained by inverse NSST transform. The experimental results show that the proposed algorithm can get fusion image with clear target and background information.

  • loading
  • [1]
    张介嵩, 黄影平, 张瑞. 基于CNN的点云图像融合目标检测[J]. 光电工程, 2021, 48(5): 200418. doi: 10.12086/oee.2021.200418

    ZHANG Jiesong, HUANG Yingping, and ZHANG Rui. Fusing point cloud with image for object detection using convolutional neural networks[J]. Opto-Electronic Engineering, 2021, 48(5): 200418. doi: 10.12086/oee.2021.200418
    [2]
    ZHOU Zhiqiang, WANG Bo, LI Sun, et al. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J]. Information Fusion, 2016, 30: 15–26. doi: 10.1016/j.inffus.2015.11.003
    [3]
    谭威, 宋闯, 赵佳佳, 等. 基于多层级图像分解的图像融合算法[J]. 红外与激光工程, 2022, 51(8): 20210681. doi: 10.3788/IRLA20210681

    TAN Wei, SONG Chuang, ZHAO Jiajia, et al. Multi-layer image decomposition-based image fusion algorithm[J]. Infrared and Laser Engineering, 2022, 51(8): 20210681. doi: 10.3788/IRLA20210681
    [4]
    戴进墩, 刘亚东, 毛先胤, 等. 基于FDST和双通道PCNN的红外与可见光图像融合[J]. 红外与激光工程, 2019, 48(2): 0204001. doi: 10.3788/IRLA201948.0204001

    DAI Jindun, LIU Yadong, MAO Xianyin, et al. Infrared and visible image fusion based on FDST and dual-channel PCNN[J]. Infrared and Laser Engineering, 2019, 48(2): 0204001. doi: 10.3788/IRLA201948.0204001
    [5]
    LIU Wei and WANG Zengfu. A novel multi-focus image fusion method using multiscale shearing non-local guided averaging filter[J]. Signal Processing, 2020, 166: 107252. doi: 10.1016/j.sigpro.2019.107252
    [6]
    ZHANG Qiang, LIU Yi, BLUM R S, et al. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: A review[J]. Information Fusion, 2018, 40: 57–75. doi: 10.1016/j.inffus.2017.05.006
    [7]
    ZHOU Huabing, HOU Jilei, ZHANG Yanduo, et al. Unified gradient- and intensity-discriminator generative adversarial network for image fusion[J]. Information Fusion, 2022, 88: 184–201. doi: 10.1016/j.inffus.2022.07.016
    [8]
    朱浩然, 刘云清, 张文颖. 基于对比度增强与多尺度边缘保持分解的红外与可见光图像融合[J]. 电子与信息学报, 2018, 40(6): 1294–1300. doi: 10.11999/JEIT170956

    ZHU Haoran, LIU Yunqing, and ZHANG Wenying. Infrared and visible image fusion based on contrast enhancement and multi-scale edge-preserving decomposition[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1294–1300. doi: 10.11999/JEIT170956
    [9]
    MA Jiayi, TANG Linfeng, XU Meilong, et al. STDFusionNet: An infrared and visible image fusion network based on salient target detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5009513. doi: 10.1109/TIM.2021.3075747
    [10]
    陈永, 张娇娇, 王镇. 多尺度密集连接注意力的红外与可见光图像融合[J]. 光学 精密工程, 2022, 30(18): 2253–2266. doi: 10.37188/OPE.20223018.2253

    CHEN Yong, ZHANG Jiaojiao, and WANG Zhen. Infrared and visible image fusion based on multi-scale dense attention connection network[J]. Optics and Precision Engineering, 2022, 30(18): 2253–2266. doi: 10.37188/OPE.20223018.2253
    [11]
    XU Meilong, TANG Linfeng, ZHANG Hao, et al. Infrared and visible image fusion via parallel scene and texture learning[J]. Pattern Recognition, 2022, 132: 108929. doi: 10.1016/j.patcog.2022.108929
    [12]
    MIRJALILI S. The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83: 80–98. doi: 10.1016/j.advengsoft.2015.01.010
    [13]
    KAPUR J N, SAHOO P K, and WONG A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics, and Image Processing, 1985, 29(3): 273–285. doi: 10.1016/0734-189X(85)90125-2
    [14]
    ABUALIGAH L, SHEHAB M, ALSHINWAN M, et al. Ant lion optimizer: A comprehensive survey of its variants and applications[J]. Archives of Computational Methods in Engineering, 2021, 28(3): 1397–1416. doi: 10.1007/s11831-020-09420-6
    [15]
    吴一全, 王志来. 基于目标提取与引导滤波增强的红外与可见光图像融合[J]. 光学学报, 2017, 37(8): 0810001. doi: 10.3788/AOS201737.0810001

    WU Yiquan and WANG Zhilai. Infrared and visible image fusion based on target extraction and guided filtering enhancement[J]. Acta Optica Sinica, 2017, 37(8): 0810001. doi: 10.3788/AOS201737.0810001
    [16]
    绽琨. 脉冲发放皮层模型及其应用[D]. [博士论文], 兰州大学, 2010.

    ZHAN Kun. Spiking cortical model and its applications[D]. [Ph. D. dissertation], Lanzhou University, 2010.
    [17]
    TOET A. TNO image fusion dataset[EB/OL]. http://dx. doi.org/10.6084/m9.figshare.1008029, 2014.
    [18]
    付阿利, 雷秀娟. 基于改进PSO算法的最大熵阈值图像分割[J]. 计算机工程与应用, 2008, 44(29): 174–176,187. doi: 10.3778/j.issn.1002-8331.2008.29.049

    FU Ali and LEI Xiujuan. Maximum-entropy thresholding image segmentation method based on improved PSO algorithm[J]. Computer Engineering and Applications, 2008, 44(29): 174–176,187. doi: 10.3778/j.issn.1002-8331.2008.29.049
    [19]
    吴鹏. 萤火虫算法优化最大熵的图像分割方法[J]. 计算机工程与应用, 2014, 50(12): 115–119. doi: 10.3778/j.issn.1002-8331.1312-0178

    WU Peng. Image segmentation method based on firefly algorithm and maximum entropy method[J]. Computer Engineering and Applications, 2014, 50(12): 115–119. doi: 10.3778/j.issn.1002-8331.1312-0178
    [20]
    BAVIRISETTI D P, XIAO Gang, ZHAO Junhao, et al. Multi-scale guided image and video fusion: A fast and efficient approach[J]. Circuits, Systems, and Signal Processing, 2019, 38(12): 5576–5605. doi: 10.1007/s00034-019-01131-z
    [21]
    巩稼民, 吴成超, 郭刘飞, 等. 基于RGF改进显著性检测与SCM相结合的图像融合[J]. 激光与红外, 2022, 52(8): 1251–1258. doi: 10.3969/j.issn.1001-5078.2022.08.023

    GONG Jiamin, WU Chengchao, GUO Liufei, et al. Image fusion based on RGF improved significance detection and SCM[J]. Laser &Infrared, 2022, 52(8): 1251–1258. doi: 10.3969/j.issn.1001-5078.2022.08.023
    [22]
    CHEN Jun, LI Xuejiao, LUO Linbo, et al. Infrared and visible image fusion based on target-enhanced multiscale transform decomposition[J]. Information Sciences, 2020, 508: 64–78. doi: 10.1016/j.ins.2019.08.066
    [23]
    巩稼民, 吴艺杰, 刘芳, 等. 基于NSST域结合SCM与引导滤波的图像融合[J]. 光电子·激光, 2021, 32(7): 719–727. doi: 10.16136/j.joel.2021.07.0482

    GONG Jiamin, WU Yijie, LIU Fang, et al. Image fusion based on nonsubsampled shearlet transform domain combined with spiking cortical model and guided filtering[J]. Journal of Optoelectronics·Laser, 2021, 32(7): 719–727. doi: 10.16136/j.joel.2021.07.0482
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (371) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return