Citation: | ZHOU Yueying, GONG Peiliang, WANG Pengpai, WEN Xuyun, ZHANG Daoqiang. Cross-operator Cognitive Workload Recognition Based on Convolutional Neural Network and Domain Generalization[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2796-2805. doi: 10.11999/JEIT221491 |
[1] |
OLUWAFEMI F A, ABDELBAKI R, LAI J C Y, et al. A review of astronaut mental health in manned missions: Potential interventions for cognitive and mental health challenges[J]. Life Sciences in Space Research, 2021, 28: 26–31. doi: 10.1016/j.lssr.2020.12.002
|
[2] |
WU E Q, CAO Zhengtao, XIONG Pengwen, et al. Brain-computer interface using brain power map and cognition detection network during flight[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 3942–3952. doi: 10.1109/TMECH.2022.3148141
|
[3] |
LIN Yi, DENG Linjie, CHEN Zhengmao, et al. A real-time ATC safety monitoring framework using a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4572–4581. doi: 10.1109/TITS.2019.2940992
|
[4] |
WICKENS C D. Multiple resources and performance prediction[J]. Theoretical Issues in Ergonomics Science, 2002, 3(2): 159–177. doi: 10.1080/14639220210123806
|
[5] |
ZHOU Yueying, HUANG Shuo, XU Ziming, et al. Cognitive workload recognition using EEG signals and machine learning: A review[J]. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14(3): 799–818. doi: 10.1109/TCDS.2021.3090217
|
[6] |
APPEL T, GERJETS P, HOFFMAN S, et al. Cross-task and cross-participant classification of cognitive load in an emergency simulation game[J]. IEEE Transactions on Affective Computing, 2023, 14(2): 1558–1571. doi: 10.1109/TAFFC.2021.3098237
|
[7] |
DEBIE E, ROJAS R F, FIDOCK J, et al. Multimodal fusion for objective assessment of cognitive workload: A review[J]. IEEE Transactions on Cybernetics, 2021, 51(3): 1542–1555. doi: 10.1109/TCYB.2019.2939399
|
[8] |
CHARLES R L and NIXON J. Measuring mental workload using physiological measures: A systematic review[J]. Applied Ergonomics, 2019, 74: 221–232. doi: 10.1016/j.apergo.2018.08.028
|
[9] |
APPRIOU A, CICHOCKI A, and LOTTE F. Modern machine-learning algorithms: For classifying cognitive and affective states from electroencephalography signals[J]. IEEE Systems, Man, and Cybernetics Magazine, 2020, 6(3): 29–38. doi: 10.1109/MSMC.2020.2968638
|
[10] |
WANG Ziheng, HOPE R M, WANG Zuoguan, et al. Cross-subject workload classification with a hierarchical Bayes model[J]. NeuroImage, 2012, 59(1): 64–69. doi: 10.1016/j.neuroimage.2011.07.094
|
[11] |
ZHANG Jianhua, WANG Yongcun, and LI Sunan. Cross-subject mental workload classification using kernel spectral regression and transfer learning techniques[J]. Cognition, Technology & Work, 2017, 19(4): 587–605. doi: 10.1007/s10111-017-0425-3
|
[12] |
BHOSALE S, CHAKRABORTY R, and KOPPARAPU S K. Calibration free meta learning based approach for subject independent EEG emotion recognition[J]. Biomedical Signal Processing and Control, 2022, 72: 103289. doi: 10.1016/j.bspc.2021.103289
|
[13] |
WANG Shouyi, GWIZDKA J, and CHAOVALITWONGSE W A. Using wireless EEG signals to assess memory workload in the n-back task[J]. IEEE Transactions on Human-Machine Systems, 2016, 46(3): 424–435. doi: 10.1109/THMS.2015.2476818
|
[14] |
APPRIOU A, CICHOCKI A, and LOTTE F. Towards robust neuroadaptive HCI: Exploring modern machine learning methods to estimate mental workload from EEG signals[C]. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, Canada, 2018: 1–6.
|
[15] |
BASHIVAN P, RISH I, YEASIN M, et al. Learning representations from EEG with deep recurrent-convolutional neural networks[C]. The 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2015.
|
[16] |
JIAO Zhicheng, GAO Xinbo, WANG Ying, et al. Deep convolutional neural networks for mental load classification based on EEG data[J]. Pattern Recognition, 2018, 76: 582–595. doi: 10.1016/j.patcog.2017.12.002
|
[17] |
ZHOU Yueying, XU Ziming, NIU Yifan, et al. Cross-task cognitive workload recognition based on EEG and domain adaptation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 50–60. doi: 10.1109/TNSRE.2022.3140456
|
[18] |
JIMÉNEZ-GUARNEROS M and GÓMEZ-GIL P. Custom domain adaptation: A new method for cross-subject, EEG-based cognitive load recognition[J]. IEEE Signal Processing Letters, 2020, 27: 750–754. doi: 10.1109/LSP.2020.2989663
|
[19] |
WANG Jindong, LAN Cuiling, LIU Chang, et al. Generalizing to unseen domains: A survey on domain generalization[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 8052–8072. doi: 10.1109/TKDE.2022.3178128
|
[20] |
SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38(11): 5391–5420. doi: 10.1002/hbm.23730
|
[21] |
GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096–2030. doi: 10.5555/2946645.2946704
|
[22] |
HEFRON R G, BORGHETTI B J, CHRISTENSEN J C, et al. Deep long short-term memory structures model temporal dependencies improving cognitive workload estimation[J]. Pattern Recognition Letters, 2017, 94: 96–104. doi: 10.1016/j.patrec.2017.05.020
|
[23] |
LAWHERN V J, SOLON A J, WAYTOWICH N R, et al. EEGnet: A compact convolutional neural network for EEG-based brain–computer interfaces[J]. Journal of Neural Engineering, 2018, 15(5): 056013. doi: 10.1088/1741-2552/aace8c
|
[24] |
HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
|
[25] |
INGOLFSSON T M, HERSCHE M, WANG Xiaying, et al. EEG-TCNet: An accurate temporal convolutional network for embedded motor-imagery brain–machine interfaces[C]. 2020 IEEE International Conference on Systems, Man, and Cybernetics, Toronto, Canada, 2020: 2958–2965.
|
[26] |
ROY R N, HINSS M F, DARMET L, et al. Retrospective on the first passive brain-computer interface competition on cross-session workload estimation[J]. Frontiers in Neuroergonomics, 2022, 3: 838342. doi: 10.3389/fnrgo.2022.838342
|
[27] |
CONGEDO M, BARACHANT A, and BHATIA R. Riemannian geometry for EEG-based brain-computer interfaces; A primer and a review[J]. Brain-Computer Interfaces, 2017, 4(3): 155–174. doi: 10.1080/2326263X.2017.1297192
|
[28] |
LA TOUR T D, MOREAU T, JAS M, et al. Multivariate convolutional sparse coding for electromagnetic brain signals[C]. The 32nd Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 3296–3306.
|
[29] |
KIM H, YOON J, JEONG B, et al. Rank-1 convolutional neural network[J]. arXiv: 1808.04303, 2018.
|
[30] |
Passive BCI hackathon - neuroergonomics conference 2021[EB/OL]. https://www.neuroergonomicsconference.um.ifi.lmu.de/pbci/.
|
[31] |
SANTIAGO-ESPADA Y. The Multi-Attribute Task Battery II (MATB-II) Software for Human Performance and Workload Research: A User’s Guide[M]. Hampton, Virginia: National Aeronautics and Space Administration, Langley Research Center, 2011.
|
[32] |
WOOLSON R F. Wilcoxon signed-rank test[M]. D'AGOSTINO R B, SULLIVAN L, and MASSARO J. Wiley Encyclopedia of Clinical Trials. John Wiley & Sons, Inc. , 2007: 1–3.
|
[33] |
VAN DER MAATEN L and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579–2605.
|