Advanced Search
Volume 46 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
SHANG Yuping, FENG Guisheng, LIAO Cheng. Edge-On Backscattering Augmentation Design of Thin Conducting Plate Based on Dielectric Resonator[J]. Journal of Electronics & Information Technology, 2024, 46(1): 353-361. doi: 10.11999/JEIT221479
Citation: SHANG Yuping, FENG Guisheng, LIAO Cheng. Edge-On Backscattering Augmentation Design of Thin Conducting Plate Based on Dielectric Resonator[J]. Journal of Electronics & Information Technology, 2024, 46(1): 353-361. doi: 10.11999/JEIT221479

Edge-On Backscattering Augmentation Design of Thin Conducting Plate Based on Dielectric Resonator

doi: 10.11999/JEIT221479
Funds:  The National Natural Science Foundation of China (61601379, 61771407)
  • Received Date: 2022-11-25
  • Rev Recd Date: 2023-04-12
  • Available Online: 2023-04-19
  • Publish Date: 2024-01-17
  • The quasi-superdirective reradiation based on the magnetic dipole resonance occurring within a passive dielectric resonator is presented to augment the backscattering cross-section of thin conducting plates at edge-on incidence. It is demonstrated that a hybrid electromagnetic resonance mode reradiating like a magnetic dipole can be induced within a properly dimensioned cuboid dielectric under the illumination of a plane electromagnetic wave. Using this cuboid dielectric as a basic unit cell, a supercell consisting of two identical dielectrics closely cascaded along the propagation direction of the impinging wave is formed. It is observed that both the magnetic and electric fields induced within the two dielectrics of the supercell exhibit opposite senses along with almost equal magnitudes. Because of the internal field distribution with opposite phases and almost equal magnitudes, the supercell acts as a two-element quasi-superdirective magnetic dipole array and the resultant quasi-superdirective reradiation effectively contributes to the backscattering cross-section enhancement. Further, the supercells with halved profile are loaded onto the surfaces of thin conducting plates according to the image theory. The results indicate that the magnetic-dipole-based quasi-superdirective reradiation assisted by dielectric resonators with a profile of only 0.078λ0 noticeably modifies the edge-on scattering characteristic of thin conducting plates. Effective augmentation of backscattering cross-section for edge-on incidence is therefore achieved within relatively wide band and angular ranges.
  • loading
  • [1]
    SHANG Yuping and SHEN Zhongxiang. Polarization-independent backscattering enhancement of cylinders based on conformal gradient metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2386–2396. doi: 10.1109/TAP.2017.2677949
    [2]
    王思豪, 廖成, 尚玉平, 等. 基于有源超表面的导电板雷达截面增强捷变设计[J]. 强激光与粒子束, 2021, 33(4): 043002. doi: 10.11884/HPLPB202133.200331

    WANG Sihao, LIAO Cheng, SHANG Yuping, et al. Agile design of cross-section enhancement of a conducting plate radar through active metasurface[J]. High Power Laser and Particle Beams, 2021, 33(4): 043002. doi: 10.11884/HPLPB202133.200331
    [3]
    LIPUMA D, MÉRIC S, and GILLARD R. RCS enhancement of flattened dihedral corner reflector using reflectarray approach[J]. Electronics Letters, 2013, 49(2): 152–154. doi: 10.1049/el.2012.4152
    [4]
    NIKOLIC N, KOT J S, and VINOGRADOV S. Scattering by a luneberg lens partially covered by a metallic cap[J]. Journal of Electromagnetic Waves and Applications, 2007, 21(4): 549–563. doi: 10.1163/156939307780616856
    [5]
    ZENTGRAF T, LIU Yongmin, MIKKELSEN M H, et al. Plasmonic Luneburg and Eaton lenses[J]. Nature Nanotechnology, 2011, 6(3): 151–155. doi: 10.1038/nnano.2010.282
    [6]
    CHEN Lei, SHI Xiaowei, ZHANG Tianling, et al. Design of a dual-frequency retrodirective array[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 478–480. doi: 10.1109/LAWP.2010.2050855
    [7]
    QI Wenjun, YU Chen, DU Jianglong, et al. Broadband radar cross-section reduction using random chessboard coding metasurface[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32(10): e23306. doi: 10.1002/mmce.23306
    [8]
    LIU Jie, LI Jianying, and CHEN Zhining. Broadband polarization conversion metasurface for antenna RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(5): 3834–3839. doi: 10.1109/TAP.2021.3137412
    [9]
    张国雯, 高军, 曹祥玉, 等. 基于三种反射型单元共享孔径的新型宽带低RCS反射屏设计[J]. 电子与信息学报, 2019, 41(12): 2925–2931. doi: 10.11999/JEITl81049

    ZHANG Guowen, GAO Jun, CAO Xiangyu, et al. Design of a novel broadband low RCS array based on three types of reflective cell shared aperture[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2925–2931. doi: 10.11999/JEITl81049
    [10]
    PESARAKLOO A and KHALAJ-AMIRHOSSEINI M. Wide-angle monostatic RCS enhancement using symmetrical periodic structures[J]. Journal of Electromagnetic Waves and Applications, 2021, 35(15): 1987–2000. doi: 10.1080/09205071.2021.1927201
    [11]
    LI Xi, HUANG Qiulin, YANG Lin, et al. Research on conformal reflectarray for RCS enhancement in specific angular domain[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31(5): e22604. doi: 10.1002/mmce.22604
    [12]
    SHANG Yuping, WANG Sihao, LIAO Cheng, et al. Dynamic augmentation of scattering cross-section by a conducting polycylinder coated with varactor-loaded metasurface[J]. IET Microwaves, Antennas & Propagation, 2021, 15(8): 835–842. doi: 10.1049/mia2.12094
    [13]
    CHEN Yan, HE Xiaoxiang, YANG Yang, et al. Dynamic RCS reduction performances of antenna array with coding metasurface[J]. International Journal of Antennas and Propagation, 2022: 4644566. doi: 10.1155/2022/4644566
    [14]
    SHANG Yuping, XIAO Shaoqiu, and SHEN Zhongxiang. Edge-on backscattering enhancement based on quasi-superdirective reradiation[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 539–542. doi: 10.1109/LAWP.2014.2368171
    [15]
    EKICI S and YAZGAN E. Dual mode dielectric resonator filter with a new source coupling slot approach[J]. Microwave and Optical Technology Letters, 2022, 64(10): 1707–1712. doi: 10.1002/mop.33356
    [16]
    YU Wei, XU Lin, ZHANG Xiuyin, et al. Dual-band dual-mode dielectric resonator filtering power divider with flexible output phase difference and power split ratio[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(1): 190–199. doi: 10.1109/TMTT.2021.3113654
    [17]
    KREMER H I, LEUNG K W, and LEE M W K. Design of substrate-integrated dielectric resonator antenna with dielectric vias[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5205–5214. doi: 10.1109/TAP.2021.3060054
    [18]
    WANG Xiaohui, CHEN Fang, and SEMOUCHKINA E. Implementation of low scattering microwave cloaking by all-dielectric metamaterials[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(2): 63–65. doi: 10.1109/LMWC.2013.2238914
    [19]
    CAMPIONE S, BASILIO L I, WARNE L K, et al. Tailoring dielectric resonator geometries for directional scattering and Huygens’ metasurfaces[J]. Optics Express, 2015, 23(3): 2293–2307. doi: 10.1364/OE.23.002293
    [20]
    VAN BLADEL J. The excitation of dielectric resonators of very high permittivity[J]. IEEE Transactions on Microwave Theory and Techniques, 1975, 23(2): 208–217. doi: 10.1109/TMTT.1975.1128529
    [21]
    STAUDE I, MIROSHNICHENKO A E, DECKER M, et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks[J]. ACS Nano, 2013, 7(9): 7824–7832. doi: 10.1021/nn402736f
    [22]
    VAN DE GROEP J and POLMAN A. Designing dielectric resonators on substrates: Combining magnetic and electric resonances[J]. Optics Express, 2013, 21(22): 26285–26302. doi: 10.1364/OE.21.026285
    [23]
    SIKDAR D, CHENG Wenlong, and PREMARATNE M. Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering[J]. Journal of Applied Physics, 2015, 117(8): 083101. doi: 10.1063/1.4907536
    [24]
    LIANG C S, STREATER D A, JIN J M, et al. A quantitative study of luneberg-lens reflectors[J]. IEEE Antennas and Propagation Magazine, 2005, 47(2): 30–42. doi: 10.1109/MAP.2005.1487776
    [25]
    OUNNAS B, SAUVIAC B, TAKAKURA Y, et al. Single and dual photonic jets and corresponding backscattering enhancement with tipped waveguides: Direct observation at microwave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5612–5618. doi: 10.1109/TAP.2015.2491328
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (293) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return