Citation: | DONG Junfei, JIANG Runhao, YAN Rui, TANG Huajin. Spiking Neural Network Recognition Method Based on Dynamic Visual Motion Features[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2731-2738. doi: 10.11999/JEIT221478 |
[1] |
GALLEGO G, DELBRÜCK T, ORCHARD G, et al. Event-based vision: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 154–180. doi: 10.1109/TPAMI.2020.3008413
|
[2] |
张宇豪, 袁孟雯, 陆宇婧, 等. 面向动态事件流的神经网络转换方法[J]. 计算机应用, 2022, 42(10): 3033–3039. doi: 10.11772/j.issn.1001-9081.2021091607
ZHANG Yuhao, YUAN Mengwen, LU Yujing, et al. Neural network conversion method for dynamic event stream[J]. Journal of Computer Applications, 2022, 42(10): 3033–3039. doi: 10.11772/j.issn.1001-9081.2021091607
|
[3] |
李家宁, 田永鸿. 神经形态视觉传感器的研究进展及应用综述[J]. 计算机学报, 2021, 44(6): 1258–1286.
LI Jianing and TIAN Yonghong, Recent advances in neuromorphic vision sensors: A survey[J]. Chinese Journal of Computers, 2021, 44(6): 1258–1286.
|
[4] |
ROY K, JAISWAL A, and PANDA P. Towards spike-based machine intelligence with neuromorphic computing[J]. Nature, 2019, 575(7784): 607–617. doi: 10.1038/s41586-019-1677-2
|
[5] |
张铁林, 徐波. 脉冲神经网络研究现状及展望[J]. 计算机学报, 2021, 44(9): 1767–1785.
ZHANG Tielin and XU Bo. Research advances and perspectives on spiking neural networks[J]. Chinese Journal of Computers, 2021, 44(9): 1767–1785.
|
[6] |
胡一凡, 李国齐, 吴郁杰, 等. 脉冲神经网络研究进展综述[J]. 控制与决策, 2021, 36(1): 1–26. doi: 10.13195/j.kzyjc.2020.1006
HU Yifan, LI Guoqi, WU Yujie, et al. Spiking neural networks: A survey on recent advances and new directions[J]. Control and Decision, 2021, 36(1): 1–26. doi: 10.13195/j.kzyjc.2020.1006
|
[7] |
ORCHARD G, MEYER C, ETIENNE-CUMMINGS R, et al. HFirst: A temporal approach to object recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10): 2028–2040. doi: 10.1109/TPAMI.2015.2392947
|
[8] |
ZHAO Bo, DING Ruoxi, CHEN Shoushun, et al. Feedforward categorization on AER motion events using cortex-like features in a spiking neural network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9): 1963–1978. doi: 10.1109/TNNLS.2014.2362542
|
[9] |
XIAO Rong, TANG Huajin, MA Yuhao, et al. An event-driven categorization model for AER image sensors using multispike encoding and learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3649–3657. doi: 10.1109/TNNLS.2019.2945630
|
[10] |
LIU Qianhui, PAN Gang, RUAN Haibo, et al. Unsupervised AER object recognition based on multiscale spatio-temporal features and spiking neurons[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(12): 5300–5311. doi: 10.1109/TNNLS.2020.2966058
|
[11] |
LIU Qianhui, RUAN Haibo, XING Dong, et al. Effective AER object classification using segmented probability-maximization learning in spiking neural networks[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 1308–1315.
|
[12] |
HE Weihua, WU Yujie, DENG Lei, et al. Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences[J]. Neural Networks, 2020, 132: 108–120. doi: 10.1016/j.neunet.2020.08.001
|
[13] |
SHRESTHA S B and ORCHARD G. SLAYER: Spike layer error reassignment in time[C]. The 32nd International Conference on Neural Information Processing Systems, Montreal, Canada, 2018: 1419–1428.
|
[14] |
KAISER J, MOSTAFA H, and NEFTCI E. Synaptic plasticity dynamics for deep continuous local learning (DECOLLE)[J]. Frontiers in Neuroscience, 2020, 14: 424. doi: 10.3389/fnins.2020.00424
|
[15] |
LIU Qianhui, XING Dong, TANG Huajin, et al. Event-based action recognition using motion information and spiking neural networks[C]. The Thirtieth International Joint Conference on Artificial Intelligence, Montreal, Canada, 2021: 1743–1749.
|
[16] |
AFSHAR S, HAMILTON T J, TAPSON J, et al. Investigation of event-based surfaces for high-speed detection, unsupervised feature extraction, and object recognition[J]. Frontiers in Neuroscience, 2019, 12: 1047. doi: 10.3389/fnins.2018.01047
|
[17] |
MANDERSCHEID J, SIRONI A, BOURDIS N, et al. Speed invariant time surface for learning to detect corner points with event-based cameras[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 10237–10246.
|
[18] |
ZHAO Bo, YU Qiang, DING Ruoxi, et al. Event-driven simulation of the tempotron spiking neuron[C]. 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, Lausanne, Switzerland, 2014: 667–670.
|
[19] |
AMIR A, TABA B, BERG D, et al. A low power, fully event-based gesture recognition system[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7388–7397.
|
[20] |
MIAO Shu, CHEN Guang, NING Xiangyu, et al. Neuromorphic vision datasets for pedestrian detection, action recognition, and fall detection[J]. Frontiers in Neurorobotics, 2019, 13: 38. doi: 10.3389/fnbot.2019.00038
|
[21] |
XING Yannan, DI CATERINA G, and SORAGHAN J. A new spiking convolutional recurrent neural network (SCRNN) with applications to event-based hand gesture recognition[J]. Frontiers in Neuroscience, 2020, 14: 590164. doi: 10.3389/fnins.2020.590164
|
[22] |
GEORGE A M, BANERJEE D, DEY S, et al. A reservoir-based convolutional spiking neural network for gesture recognition from DVS input[C]. 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, United Kingdom, 2020: 1–9.
|
[23] |
LU Junwei, DONG Junfei, YAN Rui, et al. An event-based categorization model using spatio-temporal features in a spiking neural network[C]. 2020 12th International Conference on Advanced Computational Intelligence (ICACI), Dali, China, 2020: 385–390.
|
[24] |
LAGORCE X, ORCHARD G, GALLUPPI F, et al. HOTS: A hierarchy of event-based time-surfaces for pattern recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(7): 1346–1359. doi: 10.1109/TPAMI.2016.2574707
|