Citation: | ZHANG Tielin, LI Chengyu, WANG Gang, ZHANG Malu, YU Lei, XU Bo. Research Advances and New Paradigms for Biology-inspired Spiking Neural Networks[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2675-2688. doi: 10.11999/JEIT221459 |
[1] |
MAASS W. Networks of spiking neurons: The third generation of neural network models[J]. Neural Networks, 1997, 10(9): 1659–1671. doi: 10.1016/S0893-6080(97)00011-7
|
[2] |
SEUNG H S. Learning in spiking neural networks by reinforcement of stochastic synaptic transmission[J]. Neuron, 2003, 40(6): 1063–1073. doi: 10.1016/s0896-6273(03)00761-x
|
[3] |
FIETE I R and SEUNG H S. Gradient learning in spiking neural networks by dynamic perturbation of conductances[J]. Physical Review Letters, 2006, 97(4): 048104. doi: 10.1103/PhysRevLett.97.048104
|
[4] |
ZHANG Xu, XU Ziye, HENRIQUEZ C, et al. Spike-based indirect training of a spiking neural network-controlled virtual insect[C]. 2013 IEEE 52nd Annual Conference on Decision and Control (Cdc), Firenze, Italy, 2013: 6798–6805.
|
[5] |
ZENKE F, AGNES E J, and GERSTNER W. Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks[J]. Nature Communications, 2015, 6: 6922. doi: 10.1038/ncomms7922
|
[6] |
ZHANG Tielin, ZENG Yi, ZHAO Dongcheng, et al. HMSNN: Hippocampus inspired memory spiking neural network[C]. 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 2016: 2301–2306.
|
[7] |
ZENKE F. Memory formation and recall in recurrent spiking neural networks[R]. 2014.
|
[8] |
ZHAO Bo, DING Ruoxi, CHEN Shoushun, et al. Feedforward categorization on AER motion events using cortex-like features in a spiking neural network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9): 1963–1978. doi: 10.1109/TNNLS.2014.2362542
|
[9] |
NICOLA W and CLOPATH C. Supervised learning in spiking neural networks with FORCE training[J]. Nature Communications, 2017, 8(1): 2208. doi: 10.1038/s41467-017-01827-3
|
[10] |
ZENG Yi, ZHANG Tielin, and XU Bo. Improving multi-layer spiking neural networks by incorporating brain-inspired rules[J]. Science China Information Sciences, 2017, 60(5): 052201. doi: 10.1007/s11432-016-0439-4
|
[11] |
ZHANG Tielin, ZENG Yi, ZHAO Dongcheng, et al. A plasticity-centric approach to train the non-differential spiking neural networks[C]. Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 620–628.
|
[12] |
ZHANG Tielin, ZENG Yi, ZHAO Dongcheng, et al. Brain-inspired balanced tuning for spiking neural networks[C]. Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 1653–1659.
|
[13] |
ZHANG Tielin, CHENG Xiang, JIA Shuncheng, et al. Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks[J]. Science Advances, 2021, 7(43): eabh0146. doi: 10.1126/sciadv.abh0146
|
[14] |
ZHANG Tielin, ZENG Yi, and XU Bo. A computational approach towards the microscale mouse brain connectome from the mesoscale[J]. Journal of Integrative Neuroscience, 2017, 16(3): 291–306. doi: 10.3233/JIN-170019
|
[15] |
JIA Shuncheng, ZUO Ruichen, ZHANG Tielin, et al. Motif-topology and reward-learning improved spiking neural network for efficient multi-sensory integration[C]. International Conference on Acoustics, Speech and Signal Processing, Singapore, 2022: 8917–8921.
|
[16] |
KIM Y, LI Yuhang, PARK H, et al. Neural architecture search for spiking neural networks[C]. 17th European Conference on Computer Vision, Tel-Aviv, Israel, 2022: 36–56.
|
[17] |
KIM Y, LI Yuhang, PARK H, et al. Exploring lottery ticket hypothesis in spiking neural networks[C]. 17th European Conference on Computer Vision, Tel-Aviv, Israel, 2022: 102–120.
|
[18] |
ZHANG Tielin, JIA Shuncheng, CHENG Xiang, et al. Tuning convolutional spiking neural network with biologically plausible reward propagation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 7621–7631. doi: 10.1109/TNNLS.2021.3085966
|
[19] |
JIA Shuncheng, ZHANG Tielin, CHENG Xiang, et al. Neuronal-plasticity and reward-propagation improved recurrent spiking neural networks[J]. Frontiers in Neuroscience, 2021, 15: 654786. doi: 10.3389/fnins.2021.654786
|
[20] |
BELLEC G, SCHERR F, SUBRAMONEY A, et al. A solution to the learning dilemma for recurrent networks of spiking neurons[J]. Nature Communications, 2020, 11(1): 3625. doi: 10.1038/s41467-020-17236-y
|
[21] |
ZHANG Duzhen, ZHANG Tielin, JIA Shuncheng, et al. Multi-sacle dynamic coding improved spiking actor network for reinforcement learning[C/OL]. Proceedings of the 36th AAAI Conference on Artificial Intelligence, 2022: 59–67.
|
[22] |
WU Yujie, DENG Lei, LI Guoqi, et al. Direct training for spiking neural networks: Faster, larger, better[C]. Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 1311–1318.
|
[23] |
WU Yujie, DENG Lei, LI Guoqi, et al. Spatio-temporal backpropagation for training high-performance spiking neural networks[J]. Frontiers in Neuroscience, 2018, 12: 331. doi: 10.3389/fnins.2018.00331
|
[24] |
LEE J H, DELBRUCK T, and PFEIFFER M. Training deep spiking neural networks using backpropagation[J]. Frontiers in Neuroscience, 2016, 10: 508. doi: 10.3389/fnins.2016.00508
|
[25] |
STROMATIAS E, SOTO M, SERRANO-GOTARREDONA T, et al. An event-driven classifier for spiking neural networks fed with synthetic or dynamic vision sensor data[J]. Frontiers in Neuroscience, 2017, 11: 350. doi: 10.3389/fnins.2017.00350
|
[26] |
BOBROWSKI O, MEIR R, and ELDAR Y C. Bayesian filtering in spiking neural networks: Noise, adaptation, and multisensory integration[J]. Neural Computation, 2009, 21(5): 1277–1320. doi: 10.1162/neco.2008.01-08-692
|
[27] |
BRETTE R and GOODMAN D F M. Simulating spiking neural networks on GPU[J]. Network:Computation in Neural Systems, 2012, 23(4): 167–182. doi: 10.3109/0954898X.2012.730170
|
[28] |
LILLICRAP T P, SANTORO A, MARRIS L, et al. Backpropagation and the brain[J]. Nature Reviews Neuroscience, 2020, 21(6): 335–346. doi: 10.1038/s41583-020-0277-3
|
[29] |
LILLICRAP T P, COWNDEN D, TWEED D B, et al. Random synaptic feedback weights support error backpropagation for deep learning[J]. Nature Communications, 2016, 7: 13276. doi: 10.1038/ncomms13276
|
[30] |
MEULEMANS A, CARZANIGA F S, SUYKENS J A K, et al. A theoretical framework for target propagation[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1681.
|
[31] |
FRENKEL C, LEFEBVRE M, and BOL D. Learning without feedback: Fixed random learning signals allow for feedforward training of deep neural networks[J]. Frontiers in Neuroscience, 2021, 15: 629892. doi: 10.3389/fnins.2021.629892
|
[32] |
MNIH A and HINTON G. Learning nonlinear constraints with contrastive backpropagation[C]. IEEE International Joint Conference on Neural Networks, Montreal, Canada, 2005: 1302–1307.
|
[33] |
BI Guoqiang and POO M M. Synaptic modification by correlated activity: Hebb's postulate revisited[J]. Annual Review of Neuroscience, 2001, 24: 139–166. doi: 10.1146/annurev.neuro.24.1.139
|
[34] |
DU Jiulin, WEI Hongping, WANG Zuoren, et al. Long-range retrograde spread of LTP and LTD from optic tectum to retina[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(45): 18890–18896. doi: 10.1073/pnas.0910659106
|
[35] |
ZHAO Dongcheng, ZENG Yi, ZHANG Tielin, et al. GLSNN: A multi-layer spiking neural network based on global feedback alignment and local STDP plasticity[J]. Frontiers in Computational Neuroscience, 2020, 14: 576841. doi: 10.3389/fncom.2020.576841
|
[36] |
MOZAFARI M, GANJTABESH M, NOWZARI-DALINI A, et al. SpykeTorch: Efficient simulation of convolutional spiking neural networks with at most one spike per neuron[J]. Frontiers in Neuroscience, 2019, 13: 625. doi: 10.3389/fnins.2019.00625
|
[37] |
SENGUPTA A, YE Yuting, WANG R, et al. Going deeper in spiking neural networks: VGG and residual architectures[J]. Frontiers in Neuroscience, 2019, 13: 95. doi: 10.3389/fnins.2019.00095
|
[38] |
TAVANAEI A, GHODRATI M, KHERADPISHEH S R, et al. Deep learning in spiking neural networks[J]. Neural Networks, 2019, 111: 47–63. doi: 10.1016/j.neunet.2018.12.002
|
[39] |
WU Jibin, CHUA Yansong, ZHANG Malu, et al. A spiking neural network framework for robust sound classification[J]. Frontiers in Neuroscience, 2018, 12: 836. doi: 10.3389/fnins.2018.00836
|
[40] |
YUAN Mengwen, WU Xi, YAN Rui, et al. Reinforcement learning in spiking neural networks with stochastic and deterministic synapses[J]. Neural Computation, 2019, 31(12): 2368–2389. doi: 10.1162/neco_a_01238
|
[41] |
张铁林, 徐波. 脉冲神经网络研究现状及展望[J]. 计算机学报, 2021, 44(9): 1767–1785. doi: 10.11897/SP.J.1016.2021.01767
ZHANG Tielin and XU Bo. Research advances and perspectives on spiking neural networks[J]. Chinese Journal of Computers, 2021, 44(9): 1767–1785. doi: 10.11897/SP.J.1016.2021.01767
|
[42] |
ABBOTT L F, DEPASQUALE B, and MEMMESHEIMER R M. Building functional networks of spiking model neurons[J]. Nature Neuroscience, 2016, 19(3): 350–355. doi: 10.1038/nn.4241
|
[43] |
DAN Yang and POO M M. Spike timing-dependent plasticity: From synapse to perception[J]. Physiological Reviews, 2006, 86(3): 1033–1048. doi: 10.1152/physrev.00030.2005
|
[44] |
WANG Bishan, HE Jingwei, YU Lei, et al. Event enhanced high-quality image recovery[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 155–171.
|
[45] |
LIN Shijie, ZHANG Yinqiang, YU Lei, et al. Autofocus for event cameras[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 16323–16332.
|
[46] |
ZHANG Xiang and YU Lei. Unifying motion deblurring and frame interpolation with events[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 17744–17753.
|
[47] |
LIAO Wei, ZHANG Xiang, YU Lei, et al. Synthetic aperture imaging with events and frames[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 17714–17723.
|
[48] |
KANDEL E R, SCHWARTZ J H, and JESSELL T M. Principles of Neural Science[M]. 3rd ed. Norwalk: Appleton & Lange, 1991.
|
[49] |
GÜTIG R and SOMPOLINSKY H. Time-warp–invariant neuronal processing[J]. PLoS Biology, 2009, 7(7): e1000141. doi: 10.1371/journal.pbio.1000141
|
[50] |
DENNIS J, YU Qiang, TANG Huajin, et al. Temporal coding of local spectrogram features for robust sound recognition[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 803–807.
|
[51] |
LIU S C, VAN SCHAIK A, MINCH B A, et al. Asynchronous binaural spatial audition sensor with 2×64×4 channel output[J]. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8(4): 453–464. doi: 10.1109/TBCAS.2013.2281834
|
[52] |
WANG Qingyu, ZHANG Tielin, HAN Minglun, et al. Complex dynamic neurons improved spiking transformer network for efficient automatic speech recognition[C]. Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023.
|
[53] |
DONG Linhao and XU Bo. CIF: Continuous integrate-and-fire for end-to-end speech recognition[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 6079–6083.
|
[54] |
HAN Xuan, JIA Kebin, and ZHANG Tielin. Mouse-brain topology improved evolutionary neural network for efficient reinforcement learning[C]. 5th IFIP TC 12 International Conference on Intelligence Science IV (ICIS 2022), Xi'an, China, 2022: 3–10.
|
[55] |
LIU Siqi, LEVER G, WANG Zhe, et al. From motor control to team play in simulated humanoid football[J]. Science Robotics, 2022, 7(69): eabo0235. doi: 10.1126/scirobotics.abo0235
|
[56] |
BADDELEY A. Working memory: Theories, models, and controversies[J]. Annual Review of Psychology, 2012, 63: 1–29. doi: 10.1146/annurev-psych-120710-100422
|
[57] |
ZHU Jia, CHENG Qi, CHEN Yulei, et al. Transient delay-period activity of agranular insular cortex controls working memory maintenance in learning novel tasks[J]. Neuron, 2020, 105(5): 934–946.e5. doi: 10.1016/j.neuron.2019.12.008
|
[58] |
LOZANO A M, LIPSMAN N, BERGMAN H, et al. Deep brain stimulation: Current challenges and future directions[J]. Nature Reviews Neurology, 2019, 15(3): 148–160. doi: 10.1038/s41582-018-0128-2
|
[59] |
KRAUSS J K, LIPSMAN N, AZIZ T, et al. Technology of deep brain stimulation: Current status and future directions[J]. Nature Reviews Neurology, 2021, 17(2): 75–87. doi: 10.1038/s41582-020-00426-z
|
[60] |
BEUDEL M and BROWN P. Adaptive deep brain stimulation in Parkinson's disease[J]. Parkinsonism & Related Disorders, 2016, 22(S1): S123–S126. doi: 10.1016/j.parkreldis.2015.09.028
|
[61] |
LU Meili, WEI Xile, CHE Yanqiu, et al. Application of reinforcement learning to deep brain stimulation in a computational model of Parkinson’s disease[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(1): 339–349. doi: 10.1109/TNSRE.2019.2952637
|