Citation: | XU Qi, DENG Jie, SHEN Jiangrong, TANG Huajin, PAN Gang. A Review of Image Reconstruction Based on Event Cameras[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2699-2709. doi: 10.11999/JEIT221456 |
[1] |
KIM H, LEUTENEGGER S, and DAVISON A J. Real-time 3D reconstruction and 6-DoF tracking with an event camera[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 349–364.
|
[2] |
VIDAL A R, REBECQ H, HORSTSCHAEFER T, et al. Ultimate SLAM? Combining events, images, and IMU for robust visual SLAM in HDR and high-speed scenarios[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 994–1001. doi: 10.1109/LRA.2018.2793357
|
[3] |
LAGORCE X, MEYER C, IENG S H, et al. Asynchronous event-based multikernel algorithm for high-speed visual features tracking[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(8): 1710–1720. doi: 10.1109/TNNLS.2014.2352401
|
[4] |
BARDOW P, DAVISON A J, and LEUTENEGGER S. Simultaneous optical flow and intensity estimation from an event camera[C]. 2016 IEEE Conference on Computer Vision and pattern Recognition, Las Vegas, USA, 2016: 884–892.
|
[5] |
LAGORCE X, ORCHARD G, GALLUPPI F, et al. HOTS: A hierarchy of event-based time-surfaces for pattern recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(7): 1346–1359. doi: 10.1109/TPAMI.2016.2574707
|
[6] |
SIRONI A, BRAMBILLA M, BOURDIS N, et al. HATS: Histograms of averaged time surfaces for robust event-based object classification[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1731–1740.
|
[7] |
张远辉, 许璐钧, 徐柏锐, 等. 基于事件相机的人体动作识别方法[J]. 计量学报, 2022, 43(5): 583–589. doi: 10.3969/j.issn.1000-1158.2022.05.04
ZHANG Yuanhui, XU Lujun, XU Borui, et al. Human action recognition method based on event camera[J]. Acta Metrologica Sinica, 2022, 43(5): 583–589. doi: 10.3969/j.issn.1000-1158.2022.05.04
|
[8] |
GALLEGO G, LUND J E A, MUEGGLER E, et al. Event-based, 6-DOF camera tracking from photometric depth maps[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(10): 2402–2412. doi: 10.1109/TPAMI.2017.2769655
|
[9] |
GEHRIG D, LOQUERCIO A, DERPANIS K, et al. End-to-end learning of representations for asynchronous event-based data[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 5633–5643.
|
[10] |
CORDONE L, MIRAMOND B, and THIERION P. Object detection with spiking neural networks on automotive event data[C]. International Joint Conference on Neural Networks, Padua, Italy, 2022.doi: 10.1109/IJCNN55064.2022.9892618.
|
[11] |
MUNDA G, REINBACHER C, and POCK T. Real-time intensity-image reconstruction for event cameras using manifold regularisation[J]. International Journal of Computer Vision, 2018, 126(12): 1381–1393. doi: 10.1007/s11263-018-1106-2
|
[12] |
SCHEERLINCK C, BARNES N, and MAHONY R. Continuous-time intensity estimation using event cameras[C]. The 14th Asian Conference on Computer Vision, Perth, Australia, 2018: 308–324.
|
[13] |
MAHOWALD M. VLSI analogs of neuronal visual processing: A synthesis of form and function[D]. [Ph. D. dissertation], California Institute of Technology, 1992.
|
[14] |
LICHTSTEINER P, POSCH C, and DELBRUCK T. A 128×128 120 dB 15 µs latency asynchronous temporal contrast vision sensor[J]. IEEE Journal of Solid-State Circuits, 2008, 43(2): 566–576. doi: 10.1109/JSSC.2007.914337
|
[15] |
POSCH C, MATOLIN D, and WOHLGENANNT R. A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS[J]. IEEE Journal of Solid-State Circuits, 2011, 46(1): 259–275. doi: 10.1109/JSSC.2010.2085952
|
[16] |
BRANDLI C, BERNER R, YANG Minhao, et al. A 240×180 130 db 3 µs latency global shutter spatiotemporal vision sensor[J]. IEEE Journal of Solid-State Circuits, 2014, 49(10): 2333–2341. doi: 10.1109/JSSC.2014.2342715
|
[17] |
MOEYS D P, CORRADI F, LI Chenghan, et al. A sensitive dynamic and active pixel vision sensor for color or neural imaging applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12(1): 123–136. doi: 10.1109/TBCAS.2017.2759783
|
[18] |
HUANG Jing, GUO Menghan, and CHEN Shoushun. A dynamic vision sensor with direct logarithmic output and full-frame picture-on-demand[C]. 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, USA, 2017: 1–4.
|
[19] |
HUANG Tiejun, ZHENG Yajing, YU Zhaofei, et al. 1000×faster Camera and machine vision with ordinary devices[EB/OL]. https://www.sciecedirect.com/scince/articel/pii/s2095809922002077.
|
[20] |
FOSSUM E R. CMOS image sensors: Electronic camera-on-a-chip[J]. IEEE Transactions on Electron Devices, 1997, 44(10): 1689–1698. doi: 10.1109/16.628824
|
[21] |
DONG Siwei, HUANG Tiejun, and TIAN Yonghong. Spike camera and its coding methods[C]. 2017 Data Compression Conference, Snowbird, USA, 2021: 437.
|
[22] |
COOK M, GUGELMANN L, JUG F, et al. Interacting maps for fast visual interpretation[C]. 2011 International Joint Conference on Neural Networks, San Jose, USA, 2011: 770–776.
|
[23] |
KIM H, HANDA A, BENOSMAN R, et al. Simultaneous mosaicing and tracking with an event camera[J]. J Solid State Circ, 2008, 43: 566–576.
|
[24] |
BELBACHIR A N, SCHRAML S, MAYERHOFER M, et al. A novel HDR depth camera for real-time 3D 360° panoramic vision[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, USA, 2014: 425–432.
|
[25] |
BARUA S, MIYATANI Y, and VEERARAGHAVAN A. Direct face detection and video reconstruction from event cameras[C]. 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, USA, 2016: 1–9.
|
[26] |
REBECQ H, RANFTL R, KOLTUN V, et al. Events-to-video: Bringing modern computer vision to event cameras[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3852–3861.
|
[27] |
REBECQ H, RANFTL R, KOLTUN V, et al. High speed and high dynamic range video with an event camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(6): 1964–1980. doi: 10.1109/TPAMI.2019.2963386
|
[28] |
SCHEERLINCK C, REBECQ H, GEHRIG D, et al. Fast image reconstruction with an event camera[C]. 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass, USA, 2020: 156–163.
|
[29] |
REBECQ H, GEHRIG D, and SCARAMUZZA D. ESIM: An open event camera simulator[C]. The 2nd Conference on Robot Learning, Zürich, Switzerland, 2018: 969–982.
|
[30] |
WANG Lin, MOSTAFAVI I S M, HO Y S, et al. Event-based high dynamic range image and very high frame rate video generation using conditional generative adversarial networks[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 10073–10082.
|
[31] |
WANG Lin, KIM T K, and YOON K J. EventSR: From asynchronous events to image reconstruction, restoration, and super-resolution via end-to-end adversarial learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 8312–8322.
|
[32] |
WANG Lin, KIM T K, and YOON K J. Joint framework for single image reconstruction and super-resolution with an event camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7657–7673. doi: 10.1109/TPAMI.2021.3113352
|
[33] |
ZHU Lin, DONG Siwei, LI Jianing, et al. Retina-like visual image reconstruction via spiking neural model[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 1435–1443.
|
[34] |
ZHU Lin, WANG Xiao, CHANG Yi, et al. Event-based video reconstruction via potential-assisted spiking neural network[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 3584–3594.
|
[35] |
DUWEK H C, SHALUMOV A, and TSUR E E. Image reconstruction from neuromorphic event cameras using Laplacian-prediction and Poisson integration with spiking and artificial neural networks[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Nashville, USA, 2021: 1333–1341.
|
[36] |
BRANDLI C, MULLER L, and DELBRUCK T. Real-time, high-speed video decompression using a frame-and event-based DAVIS sensor[C]. 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, 2014: 686–689.
|
[37] |
LIU Hanchao, ZHANG Fanglue, MARSHALL D, et al. High-speed video generation with an event camera[J]. The Visual Computer, 2017, 33(6): 749–759.
|
[38] |
PAN Liyuan, SCHEERLINCK C, YU Xin, et al. Bringing a blurry frame alive at high frame-rate with an event camera[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6813–6822.
|
[39] |
PAN Liyuan, HARTLEY R, SCHEERLINCK C, et al. High frame rate video reconstruction based on an event camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(5): 2519–2533. doi: 10.1109/TPAMI.2020.3036667
|
[40] |
SHEDLIGERI P and MITRA K. Photorealistic image reconstruction from hybrid intensity and event-based sensor[J]. Journal of Electronic Imaging, 2019, 28(6): 063012. doi: 10.1117/1.JEI.28.6.063012
|