Citation: | LIU Zhiwei, ZHANG Qi, HUANG Hai, YANG Xiaoqiu, CHEN Guanbai, ZHAO Shilei, YU Bin. Design of High Area Efficiency Elliptic Curve Scalar Multiplier Based on Fast Modulo Reduction of Bit Reorganization[J]. Journal of Electronics & Information Technology, 2024, 46(1): 344-352. doi: 10.11999/JEIT221446 |
[1] |
ANSI. ANSI X9.63 Public key cryptography for the financial services industry: Elliptic curve key agreement and key transport protocols[S]. 2000.
|
[2] |
BARKER E. Digital signature standard[R]. Gaithersburg: National Institute of Standards and Technology, 2000.
|
[3] |
Institute of Electrical and Electronic Engineers. 1363-2000 IEEE standard specifications for public-key cryptography[S]. IEEE, 2000.
|
[4] |
JAVEED K, SAEED K, and GREGG D. High-speed parallel reconfigurable Fp multipliers for elliptic curve cryptography applications[J]. International Journal of Circuit Theory and Applications, 2022, 50(4): 1160–1173. doi: 10.1002/cta.3206
|
[5] |
WANG Huaqun, HE Debiao, and JI Yimu. Designated-verifier proof of assets for bitcoin exchange using elliptic curve cryptography[J]. Future Generation Computer Systems, 2020, 107: 854–862. doi: 10.1016/j.future.2017.06.028
|
[6] |
HU Xianghong, ZHENG Xin, ZHANG Shengshi, et al. A high-performance elliptic curve cryptographic processor of SM2 over GF(p)[J]. Electronics, 2019, 8(4): 431. doi: 10.3390/electronics8040431
|
[7] |
HUANG Hai, NA Ning, XING Lin, et al. An improved wNAF Scalar-multiplication algorithm with low computational complexity by using prime precomputation[J]. IEEE Access, 2021, 9: 31546–31552. doi: 10.1109/ACCESS.2021.3061124
|
[8] |
赵石磊, 杨晓秋, 刘志伟, 等. 一种低复杂度的改进wNAF标量乘算法[J]. 电子学报, 2022, 50(4): 977–983. doi: 10.12263/DZXB.20211016
ZHAO Shilei, YANG Xiaoqiu, LIU Zhiwei, et al. An Improved wNAF Scalar-Multiplication Algorithm With Low Computational Complexity[J]. Acta Electronica Sinica, 2022, 50(4): 977–983. doi: 10.12263/DZXB.20211016
|
[9] |
LIU Zilong, LIU Dongsheng, and ZOU Xuecheng. An efficient and flexible hardware implementation of the dual-field elliptic curve cryptographic processor[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2353–2362. doi: 10.1109/TIE.2016.2625241
|
[10] |
HOSSAIN M S, KONG Yinan, SAEEDI E, et al. High-performance elliptic curve cryptography processor over NIST prime fields[J]. IET Computers & Digital Techniques, 2017, 11(1): 33–42. doi: 10.1049/iet-cdt.2016.0033
|
[11] |
LIU Jianwei, CHENG Dongxu, GUAN Zhenyu, et al. A high speed VLSI implementation of 256-bit scalar point multiplier for ECC over GF(p)[C]. Proceedings of 2018 IEEE International Conference on Intelligence and Safety for Robotics, Shenyang, China, 2018: 184–191.
|
[12] |
HU Xianghong, ZHENG Xin, ZHANG Shengshi, et al. A low hardware consumption elliptic curve cryptographic architecture over GF(p) in embedded application[J]. Electronics, 2018, 7(7): 104. doi: 10.3390/electronics7070104
|
[13] |
CHOI P, LEE M K, KIM J H, et al. Low-complexity elliptic curve cryptography processor based on configurable partial modular reduction over NIST prime fields[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2018, 65(11): 1703–1707. doi: 10.1109/TCSII.2017.2756680
|
[14] |
ZHANG Dan and BAI Guoqiang. Ultra high-performance ASIC implementation of SM2 with power-analysis resistance[C]. Proceedings of 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Singapore, 2015: 523–526.
|
[15] |
ISLAM M M, HOSSAIN M S, SHAHJALAL M, et al. Area-time efficient hardware implementation of modular multiplication for elliptic curve cryptography[J]. IEEE Access, 2020, 8: 73898–73906. doi: 10.1109/ACCESS.2020.2988379
|
[16] |
HANKERSON D, VANSTONE S, and MENEZES A. Guide to Elliptic Curve Cryptography[M]. New York: Springer, 2004: 312.
|
[17] |
LUCCA A V, SBORZ G A M, LEITHARDT V R Q, et al. A review of techniques for implementing elliptic curve point multiplication on hardware[J]. Journal of Sensor and Actuator Networks, 2021, 10(1): 3. doi: 10.3390/jsan10010003
|
[18] |
王敏, 吴震. 抗SPA攻击的椭圆曲线NAF标量乘实现算法[J]. 通信学报, 2012, 33(S1): 228–232.
WANG Min and WU Zhen. Algorithm of NAF scalar multiplication on ECC against SPA[J]. Journal on Communications, 2012, 33(S1): 228–232.
|
[19] |
SOLINAS J A. Efficient arithmetic on Koblitz curves[J]. Designs, Codes and Cryptography, 2000, 19(2): 195–249. doi: 10.1023/A:1008306223194
|
[20] |
KARATSUBA A. Multiplication of multidigit numbers on automata[J]. Soviet Physics Doklady, 1963, 7: 595–596.
|
[21] |
CHOI P, LEE M K, KONG J T, et al. Efficient design and performance analysis of a hardware right-shift binary modular inversion algorithm in GF(p)[J]. Journal of Semiconductor Technology and Science, 2017, 17(3): 425–437. doi: 10.5573/JSTS.2017.17.3.425
|
[22] |
HU Xianghong, LI Xueming, ZHENG Xin, et al. A high speed processor for elliptic curve cryptography over NIST prime field[J]. IET Circuits, Devices & Systems, 2022, 16(4): 350–359. doi: 10.1049/CDS2.12110
|
[23] |
于斌, 黄海, 刘志伟, 等. 面向多椭圆曲线的高速标量乘法器设计与实现[J]. 通信学报, 2020, 41(12): 100–109. doi: 10.11959/j.issn.1000-463X.2020226
YU Bin, HUANG Hai, LIU Zhiwei, et al. Design and implementation of high-speed scalar multiplier for multi-elliptic curve[J]. Journal on Communications, 2020, 41(12): 100–109. doi: 10.11959/j.issn.1000-463X.2020226
|
[24] |
ISLAM M M, HOSSAIN M S, HASAN M K, et al. FPGA implementation of high-speed area-efficient processor for elliptic curve point multiplication over prime field[J]. IEEE Access, 2019, 7: 178811–178826. doi: 10.1109/ACCESS.2019.2958491
|
[25] |
ASIF S, HOSSAIN M S, and KONG Yinan. High-throughput multi-key elliptic curve cryptosystem based on residue number system[J]. IET Computers & Digital Techniques, 2017, 11(5): 165–172. doi: 10.1049/iet-cdt.2016.0141
|