Citation: | ZHANG Jilun, ZHU Yi, LI Ying, CHEN Fang, LIU Ying, QU Hong. Non-contact Liquid Level Detection Method Based on Multilayer Spiking Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2759-2769. doi: 10.11999/JEIT221388 |
[1] |
AREEKATH L, LODHA G, KUMAR SAHANA S, et al. Feasibility of a planar coil-based inductive-capacitive water level sensor with a quality-detection feature: An experimental study[J]. Sensors, 2022, 22(15): 5508. doi: 10.3390/s22155508
|
[2] |
ISLAM T, MAURYA O P, and KHAN A U. Design and fabrication of fringing field capacitive sensor for non-contact liquid level measurement[J]. IEEE Sensors Journal, 2021, 21(21): 24812–24819. doi: 10.1109/jsen.2021.3112848
|
[3] |
ISMAEL M A, LAFTAH R M, and FALIH M N. Measurement of liquid level in partially-filled pipes using a noise of electromagnetic flowmeter[J]. Al-Qadisiyah Journal for Engineering Sciences, 2018, 10(4): 550–564. doi: 10.30772/qjes.v10i4.504
|
[4] |
王路平, 魏勇, 汪玉祥, 等. 井下动液面声波信号处理方法研究[J]. 电子测量技术, 2021, 44(22): 87–95. doi: 10.19651/j.cnki.emt.2107326
WANG Luping, WEI Yong, WANG Yuxiang, et al. Research on acoustic signal processing method of downhole moving liquid level[J]. Electronic Measurement Technology, 2021, 44(22): 87–95. doi: 10.19651/j.cnki.emt.2107326
|
[5] |
贾静, 吉娇, 檀洋阳, 等. 基于超声波的液面位置测量方法研究[J]. 应用物理, 2022, 12(5): 233–238. doi: 10.12677/app.2022.125026
JIA Jing, JI Jiao, TAN Yangyang, et al. Research on liquid level position measurement method based on ultrasonic wave[J]. Applied Physics, 2022, 12(5): 233–238. doi: 10.12677/app.2022.125026
|
[6] |
HE Runjie, TENG Chuanxin, KUMAR S, et al. Polymer optical fiber liquid level sensor: A review[J]. IEEE Sensors Journal, 2022, 22(2): 1081–1091. doi: 10.1109/jsen.2021.3132098
|
[7] |
LIAO Kaiyu, LI Yulong, LEI Min, et al. A liquid level sensor based on spiral macro-bending plastic optical fiber[J]. Optical Fiber Technology, 2022, 70: 102874. doi: 10.1016/j.yofte.2022.102874
|
[8] |
WEI Minghui, DENG Zigang, ZHENG Jun, et al. Magnetic float liquid level detection method for high-temperature superconducting flux-pinning maglev system[J]. IEEE Transactions on Applied Superconductivity, 2022, 32(4): 9000105. doi: 10.1109/tasc.2021.3131398
|
[9] |
LAN Yanling, HAN Ding, BAI Fengshan, et al. Review of research and application of fluid flow detection based on computer vision[C]. Proceedings of the 4th International Conference on Computer Science and Application Engineering, Sanya, China, 2020: 127.
|
[10] |
SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484–489. doi: 10.1038/nature16961
|
[11] |
SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676): 354–359. doi: 10.1038/nature24270
|
[12] |
LI Shutao, SONG Weiwei, FANG Leyuan, et al. Deep learning for hyperspectral image classification: An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6690–6709. doi: 10.1109/tgrs.2019.2907932
|
[13] |
CHAN T H, JIA Kui, GAO Shenghua, et al. PCANet: A simple deep learning baseline for image classification?[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5017–5032. doi: 10.1109/tip.2015.2475625
|
[14] |
ZHANG Jianpeng, XIE Yutong, WU Qi, et al. Medical image classification using synergic deep learning[J]. Medical Image Analysis, 2019, 54: 10–19. doi: 10.1016/j.media.2019.02.010
|
[15] |
JIAO Licheng, ZHANG Ruohan, LIU Fang, et al. New generation deep learning for video object detection: A survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3195–3215. doi: 10.1109/tnnls.2021.3053249
|
[16] |
贺丰收, 何友, 刘准钆, 等. 卷积神经网络在雷达自动目标识别中的研究进展[J]. 电子与信息学报, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899
HE Fengshou, HE You, LIU Zhunga, et al. Research and development on applications of convolutional neural networks of radar automatic target recognition[J]. Journal of Electronics &Information Technology, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899
|
[17] |
ESMAEILPOUR M, CARDINAL P, and KOERICH A L. Multidiscriminator sobolev defense-GAN against adversarial attacks for end-to-end speech systems[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 2044–2058. doi: 10.1109/tifs.2022.3175603
|
[18] |
ALI A, CHOWDHURY S, AFIFY M, et al. Connecting Arabs: Bridging the gap in dialectal speech recognition[J]. Communications of the ACM, 2021, 64(4): 124–129. doi: 10.1145/3451150
|
[19] |
廖昭洋, 胡睿晗, 周雪峰, 等. 基于时空混合图卷积网络的机器人定位误差预测及补偿方法[J]. 电子与信息学报, 2022, 44(5): 1539–1547. doi: 10.11999/JEIT211381
LIAO Zhaoyang, HU Ruihan, ZHOU Xuefeng, et al. Prediction and compensation method of robot positioning error based on spatio-temporal graph convolution neural network[J]. Journal of Electronics &Information Technology, 2022, 44(5): 1539–1547. doi: 10.11999/JEIT211381
|
[20] |
张铁林, 徐波. 脉冲神经网络研究现状及展望[J]. 计算机学报, 2021, 44(9): 1767–1785. doi: 10.11897/sp.j.1016.2021.01767
ZHANG Tielin and XU Bo. Research advances and perspectives on spiking neural networks[J]. Chinese Journal of Computers, 2021, 44(9): 1767–1785. doi: 10.11897/sp.j.1016.2021.01767
|
[21] |
LUO Xiaoling, QU Hong, WANG Yuchen, et al. Supervised learning in multilayer spiking neural networks with spike temporal error backpropagation[J]. IEEE Transactions on Neural Networks and Learning Systems, To be published.
|
[22] |
MAASS W. Networks of spiking neurons: The third generation of neural network models[J]. Neural Networks, 1997, 10(9): 1659–1671. doi: 10.1016/S0893-6080(97)00011-7
|
[23] |
胡一凡, 李国齐, 吴郁杰, 等. 脉冲神经网络研究进展综述[J]. 控制与决策, 2021, 36(1): 1–26. doi: 10.13195/j.kzyjc.2020.1006
HU Yifan, LI Guoqi, WU Yujie, et al. Spiking neural networks: A survey on recent advances and new directions[J]. Control and Decision, 2021, 36(1): 1–26. doi: 10.13195/j.kzyjc.2020.1006
|
[24] |
HAN Bing and ROY K. Deep spiking neural network: Energy efficiency through time based coding[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 388–404.
|
[25] |
ZHANG Lei, ZHOU Shengyuan, ZHI Tian, et al. TDSNN: From deep neural networks to deep spike neural networks with temporal-coding[C]. Proceedings of the 33rd AAAI conference on artificial intelligence, Honolulu, USA, 2019: 1319–1326.
|
[26] |
KIM Y and PANDA P. Optimizing deeper spiking neural networks for dynamic vision sensing[J]. Neural Networks, 2021, 144: 686–698. doi: 10.1016/j.neunet.2021.09.022
|
[27] |
CAPORALE N and DAN Yang. Spike timing-dependent plasticity: A Hebbian learning rule[J]. Annual Review of Neuroscience, 2008, 31: 25–46. doi: 10.1146/annurev.neuro.31.060407.125639
|
[28] |
XU Qi, PENG Jianxin, SHEN Jiangrong, et al. Deep CovDenseSNN: A hierarchical event-driven dynamic framework with spiking neurons in noisy environment[J]. Neural Networks, 2020, 121: 512–519. doi: 10.1016/j.neunet.2019.08.034
|
[29] |
XU Qi, SHEN Jiangrong, RAN Xuming, et al. Robust transcoding sensory information with neural spikes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(5): 1935–1946. doi: 10.1109/TNNLS.2021.3107449
|
[30] |
任明武, 杨万扣, 王欢, 等. 一种基于图像的水位自动测量新方法[J]. 计算机工程与应用, 2007, 43(22): 204–206. doi: 10.3321/j.issn:1002-8331.2007.22.061
REN Mingwu, YANG Wankou, WANG Huan, et al. New algorithm of automatic water level measurement based on image processing[J]. Computer Engineering and Applications, 2007, 43(22): 204–206. doi: 10.3321/j.issn:1002-8331.2007.22.061
|
[31] |
SHEN Jun and CASTAN S. An optimal linear operator for step edge detection[J]. CVGIP:Graphical Models and Image Processing, 1992, 54(2): 112–133. doi: 10.1016/1049-9652(92)90060-b
|
[32] |
黄玲, 张叶林, 胡波, 等. 基于机器视觉的透明瓶装液体液位自动检测[J]. 自动化与仪表, 2012, 27(2): 57–60. doi: 10.3969/j.issn.1001-9944.2012.02.016
HUANG Ling, ZHANG Yelin, HU Bo, et al. Automatic detection of liquid level in transparent bottle based on machine vision[J]. Automation &Instrumentation, 2012, 27(2): 57–60. doi: 10.3969/j.issn.1001-9944.2012.02.016
|
[33] |
李博文. 基于机器视觉的饮水机取水杯液位检测系统开发研究[D]. [硕士论文], 华南理工大学, 2019.
LI Bowen. Development of the machine vision-based liquid level detection system[D]. [Master dissertation], South China University of Technology, 2019.
|
[34] |
廖赟, 段清, 刘俊晖, 等. 基于深度学习的水位线检测算法[J]. 计算机应用, 2020, 40(S1): 274–278. doi: 10.11772/j.issn.1001-9081.2019081360
LIAO Yun, DUAN Qing, LIU Junhui, et al. Water line detection algorithm based on deep learning[J]. Journal of Computer Applications, 2020, 40(S1): 274–278. doi: 10.11772/j.issn.1001-9081.2019081360
|
[35] |
JIANG Yijun, SCHENCK E, KRANZ S, et al. CNN-based non-contact detection of food level in bottles from RGB images[C]. 25th International Conference on Multimedia Modeling, Thessaloniki, Greece, 2019: 202–213.
|
[36] |
WANG Ran, LIU Fengkai, HOU Fatao, et al. A non-contact fault diagnosis method for rolling bearings based on acoustic imaging and convolutional neural networks[J]. IEEE Access, 2020, 8: 132761–132774. doi: 10.1109/access.2020.3010272
|
[37] |
QIAO Guangchao, YANG Mingxiang, and WANG Hao. A water level measurement approach based on YOLOv5s[J]. Sensors, 2022, 22(10): 3714. doi: 10.3390/s22103714
|
[38] |
梁霄, 李家炜, 赵小龙, 等. 基于深度学习的红外目标成像液位检测方法[J]. 光学学报, 2021, 41(21): 2110001. doi: 10.3788/AOS202141.2110001
LIANG Xiao, LI Jiawei, ZHAO Xiaolong, et al. Infrared target imaging liquid level detection method based on deep learning[J]. Acta Optica Sinica, 2021, 41(21): 2110001. doi: 10.3788/AOS202141.2110001
|
[39] |
HUANG Zeyong, LI Yuhong, ZHAO Tingting, et al. Infusion port level detection for intravenous infusion based on YOLO v3 neural network[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 3491–3501. doi: 10.3934/mbe.2021175
|
[40] |
MAASS W and BISHOP C M. Pulsed Neural Networks[M]. Cambridge: MIT Press, 2001.
|
[41] |
LAPICQUE L. Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization[J]. Journal of Physiol Pathol Générale, 1907, 9: 620–635.
|
[42] |
HODGKIN A L and HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of Physiology, 1952, 117(4): 500–544. doi: 10.1113/jphysiol.1952.sp004764
|