Citation: | GAO Shaobing, ZHAN Zongyi, KUANG Mei. Multi-Scenario Aware Infrared and Visible Image Fusion Framework Based on Visual Multi-Pathway Mechanism[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2749-2758. doi: 10.11999/JEIT221361 |
[1] |
MA Jiayi, MA Yong, and LI Chang. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 2019, 45: 153–178. doi: 10.1016/j.inffus.2018.02.004
|
[2] |
ZHANG Hao, XU Han, TIAN Xin, et al. Image fusion meets deep learning: A survey and perspective[J]. Information Fusion, 2021, 76: 323–336. doi: 10.1016/j.inffus.2021.06.008
|
[3] |
朱浩然, 刘云清, 张文颖. 基于对比度增强与多尺度边缘保持分解的红外与可见光图像融合[J]. 电子与信息学报, 2018, 40(6): 1294–1300. doi: 10.11999/JEIT170956
ZHU Haoran, LIU Yunqing, and ZHANG Wenying. Infrared and visible image fusion based on contrast enhancement and multi-scale edge-preserving decomposition[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1294–1300. doi: 10.11999/JEIT170956
|
[4] |
LIU Yu, CHEN Xun, WARD R K, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016, 23(12): 1882–1886. doi: 10.1109/LSP.2016.2618776
|
[5] |
FU Zhizhong, WANG Xue, XU Jin, et al. Infrared and visible images fusion based on RPCA and NSCT[J]. Infrared Physics & Technology, 2016, 77: 114–123. doi: 10.1016/j.infrared.2016.05.012
|
[6] |
MA Jinlei, ZHOU Zhiqiang, WANG Bo, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8–17. doi: 10.1016/j.infrared.2017.02.005
|
[7] |
LI Hui, WU Xiaojun, and KITTLER J. Infrared and visible image fusion using a deep learning framework[C]. Proceedings of the 24th International Conference on Pattern Recognition, Beijing, China, 2018: 2705–2710.
|
[8] |
ZHANG Hao, XU Han, XIAO Yang, et al. Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity[C]. Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12797–12804.
|
[9] |
LI Hui and WU Xiaojun. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614–2623. doi: 10.1109/TIP.2018.2887342
|
[10] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755.
|
[11] |
LI Hui, WU Xiaojun, and KITTLER J. RFN-Nest: An end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73: 72–86. doi: 10.1016/j.inffus.2021.02.023
|
[12] |
MA Jiayi, YU Wei, LIANG Pengwei, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11–26. doi: 10.1016/j.inffus.2018.09.004
|
[13] |
MA Jiayi, ZHANG Hao, SHAO Zhenfeng, et al. GANMcC: A generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 5005014. doi: 10.1109/TIM.2020.3038013
|
[14] |
TAN Minjie, GAO Shaobing, XU Wenzheng, et al. Visible-infrared image fusion based on early visual information processing mechanisms[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(11): 4357–4369. doi: 10.1109/TCSVT.2020.3047935
|
[15] |
WAXMAN A M, GOVE A N, FAY D A, et al. Color night vision: Opponent processing in the fusion of visible and IR imagery[J]. Neural Networks, 1997, 10(1): 1–6. doi: 10.1016/S0893-6080(96)00057-3
|
[16] |
GOODALE M A and MILNER D A. Separate visual pathways for perception and action[J]. Trends in Neurosciences, 1992, 15(1): 20–25. doi: 10.1016/0166-2236(92)90344-8
|
[17] |
CHEN Ke, SONG Xuemei, and LI Chaoyi. Contrast-dependent variations in the excitatory classical receptive field and suppressive nonclassical receptive field of cat primary visual cortex[J]. Cerebral Cortex, 2013, 23(2): 283–292. doi: 10.1093/cercor/bhs012
|
[18] |
TANG Linfeng, YUAN Jiteng, ZHANG Hao, et al. PIAFusion: A progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 2022, 83/84: 79–92. doi: 10.1016/j.inffus.2022.03.007
|
[19] |
ANGELUCCI A and SHUSHRUTH S. Beyond the classical receptive field: Surround modulation in primary visual cortex[M]. WERNER J S and CHALUPA L M. The New Visual Neurosciences. Cambridge: MIT Press, 2013: 425–444.
|
[20] |
GAO Shaobing, YANG Kaifu, LI Chaoyi, et al. Color constancy using double-opponency[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10): 1973–1985. doi: 10.1109/TPAMI.2015.2396053
|
[21] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. Proceedings of 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
|
[22] |
VINKER Y, HUBERMAN-SPIEGELGLAS I, and FATTAL R. Unpaired learning for high dynamic range image tone mapping[C]. Proceedings of 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 14637–14646.
|
[23] |
TOET A. The TNO multiband image data collection[J]. Data in Brief, 2017, 15: 249–251. doi: 10.1016/j.dib.2017.09.038
|
[24] |
MA Jiayi, CHEN Chen, LI Chang, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31: 100–109. doi: 10.1016/j.inffus.2016.02.001
|
[25] |
WANG Di, LIU Jinyuan, FAN Xin, et al. Unsupervised misaligned infrared and visible image fusion via cross-modality image generation and registration[C]. Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, Vienna, Austria, 2022: 3508–3515.
|