Advanced Search
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
GAO Shaobing, ZHAN Zongyi, KUANG Mei. Multi-Scenario Aware Infrared and Visible Image Fusion Framework Based on Visual Multi-Pathway Mechanism[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2749-2758. doi: 10.11999/JEIT221361
Citation: GAO Shaobing, ZHAN Zongyi, KUANG Mei. Multi-Scenario Aware Infrared and Visible Image Fusion Framework Based on Visual Multi-Pathway Mechanism[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2749-2758. doi: 10.11999/JEIT221361

Multi-Scenario Aware Infrared and Visible Image Fusion Framework Based on Visual Multi-Pathway Mechanism

doi: 10.11999/JEIT221361
Funds:  The National Natural Science Foundation of China (62076170), Intelligent Terminal Key Laboratory of Sichuan Province (SCITLAB-20001)
  • Received Date: 2022-10-31
  • Rev Recd Date: 2023-05-06
  • Available Online: 2023-05-10
  • Publish Date: 2023-08-21
  • Most existing infrared and visible image fusion methods neglect the disparities between daytime and nighttime scenarios and consider them similar, leading to low accuracy. However, the adaptive properties of the biological vision system allow for the capture of helpful information from source images and adaptive visual information processing. This concept provides a new direction for improving the accuracy of the deep-learning-based infrared and visible image fusion methods. Inspired by the visual multi-pathway mechanism, this study proposes a multi-scenario aware infrared and visible image fusion framework to incorporate two distinct visual pathways capable of perceiving daytime and nighttime scenarios. Specifically, daytime- and nighttime-scenario-aware fusion networks process the source images to generate two intermediate fusion results. Finally, a learnable weighting network obtains the final result. Additionally, the proposed framework utilizes a novel center-surround convolution module that simulates the widely distributed center-surround receptive field in biological vision. Qualitative and quantitative experiments demonstrate that the proposed framework improves significantly the quality of the fused image and outperforms existing methods in objective evaluation metrics.
  • loading
  • [1]
    MA Jiayi, MA Yong, and LI Chang. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 2019, 45: 153–178. doi: 10.1016/j.inffus.2018.02.004
    [2]
    ZHANG Hao, XU Han, TIAN Xin, et al. Image fusion meets deep learning: A survey and perspective[J]. Information Fusion, 2021, 76: 323–336. doi: 10.1016/j.inffus.2021.06.008
    [3]
    朱浩然, 刘云清, 张文颖. 基于对比度增强与多尺度边缘保持分解的红外与可见光图像融合[J]. 电子与信息学报, 2018, 40(6): 1294–1300. doi: 10.11999/JEIT170956

    ZHU Haoran, LIU Yunqing, and ZHANG Wenying. Infrared and visible image fusion based on contrast enhancement and multi-scale edge-preserving decomposition[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1294–1300. doi: 10.11999/JEIT170956
    [4]
    LIU Yu, CHEN Xun, WARD R K, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016, 23(12): 1882–1886. doi: 10.1109/LSP.2016.2618776
    [5]
    FU Zhizhong, WANG Xue, XU Jin, et al. Infrared and visible images fusion based on RPCA and NSCT[J]. Infrared Physics & Technology, 2016, 77: 114–123. doi: 10.1016/j.infrared.2016.05.012
    [6]
    MA Jinlei, ZHOU Zhiqiang, WANG Bo, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8–17. doi: 10.1016/j.infrared.2017.02.005
    [7]
    LI Hui, WU Xiaojun, and KITTLER J. Infrared and visible image fusion using a deep learning framework[C]. Proceedings of the 24th International Conference on Pattern Recognition, Beijing, China, 2018: 2705–2710.
    [8]
    ZHANG Hao, XU Han, XIAO Yang, et al. Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity[C]. Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12797–12804.
    [9]
    LI Hui and WU Xiaojun. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614–2623. doi: 10.1109/TIP.2018.2887342
    [10]
    LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755.
    [11]
    LI Hui, WU Xiaojun, and KITTLER J. RFN-Nest: An end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73: 72–86. doi: 10.1016/j.inffus.2021.02.023
    [12]
    MA Jiayi, YU Wei, LIANG Pengwei, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11–26. doi: 10.1016/j.inffus.2018.09.004
    [13]
    MA Jiayi, ZHANG Hao, SHAO Zhenfeng, et al. GANMcC: A generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 5005014. doi: 10.1109/TIM.2020.3038013
    [14]
    TAN Minjie, GAO Shaobing, XU Wenzheng, et al. Visible-infrared image fusion based on early visual information processing mechanisms[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(11): 4357–4369. doi: 10.1109/TCSVT.2020.3047935
    [15]
    WAXMAN A M, GOVE A N, FAY D A, et al. Color night vision: Opponent processing in the fusion of visible and IR imagery[J]. Neural Networks, 1997, 10(1): 1–6. doi: 10.1016/S0893-6080(96)00057-3
    [16]
    GOODALE M A and MILNER D A. Separate visual pathways for perception and action[J]. Trends in Neurosciences, 1992, 15(1): 20–25. doi: 10.1016/0166-2236(92)90344-8
    [17]
    CHEN Ke, SONG Xuemei, and LI Chaoyi. Contrast-dependent variations in the excitatory classical receptive field and suppressive nonclassical receptive field of cat primary visual cortex[J]. Cerebral Cortex, 2013, 23(2): 283–292. doi: 10.1093/cercor/bhs012
    [18]
    TANG Linfeng, YUAN Jiteng, ZHANG Hao, et al. PIAFusion: A progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 2022, 83/84: 79–92. doi: 10.1016/j.inffus.2022.03.007
    [19]
    ANGELUCCI A and SHUSHRUTH S. Beyond the classical receptive field: Surround modulation in primary visual cortex[M]. WERNER J S and CHALUPA L M. The New Visual Neurosciences. Cambridge: MIT Press, 2013: 425–444.
    [20]
    GAO Shaobing, YANG Kaifu, LI Chaoyi, et al. Color constancy using double-opponency[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10): 1973–1985. doi: 10.1109/TPAMI.2015.2396053
    [21]
    RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. Proceedings of 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
    [22]
    VINKER Y, HUBERMAN-SPIEGELGLAS I, and FATTAL R. Unpaired learning for high dynamic range image tone mapping[C]. Proceedings of 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 14637–14646.
    [23]
    TOET A. The TNO multiband image data collection[J]. Data in Brief, 2017, 15: 249–251. doi: 10.1016/j.dib.2017.09.038
    [24]
    MA Jiayi, CHEN Chen, LI Chang, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31: 100–109. doi: 10.1016/j.inffus.2016.02.001
    [25]
    WANG Di, LIU Jinyuan, FAN Xin, et al. Unsupervised misaligned infrared and visible image fusion via cross-modality image generation and registration[C]. Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, Vienna, Austria, 2022: 3508–3515.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (653) PDF downloads(153) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return