Advanced Search
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
ZHANG Xianshi, SONG Jian, SONG Sijin, LI Yongjie. Design of Biological-inspired Low-light Video Adaptive Enhancement and FPGA Accelerated Implementation[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2739-2748. doi: 10.11999/JEIT221346
Citation: ZHANG Xianshi, SONG Jian, SONG Sijin, LI Yongjie. Design of Biological-inspired Low-light Video Adaptive Enhancement and FPGA Accelerated Implementation[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2739-2748. doi: 10.11999/JEIT221346

Design of Biological-inspired Low-light Video Adaptive Enhancement and FPGA Accelerated Implementation

doi: 10.11999/JEIT221346
Funds:  Sichuan Science and Technology Program (#2022ZYD0112), The Natural Science Foundation of Sichuan Province (2022NSFSC0527)
  • Received Date: 2022-10-27
  • Rev Recd Date: 2023-07-13
  • Available Online: 2023-07-19
  • Publish Date: 2023-08-21
  • A nighttime image enhancement model is proposed in this paper, which is inspired by biological vision mechanism and implemented on Field Programmable Gate Arrays (FPGA) for real-time enhancement of low-light videos and images. Inspired by the Midget cells and the Parasol cells in the early visual system, the proposed method processes the structure and detail information through two independent pathways respectively, and obtains a nice effect and efficiency. To achieve real-time enhancement of high-resolution videos, this paper implements the proposed method on Field Programmable Gate Arrays. High data throughput is ensured through hardware design such as sliding data window parallel processing, adjacent frame information sharing, and multi-channel parallelization. Implemented on Field Programmable Gate Arrays XC7Z100, the proposed design achieves processing 60 frames per second for 1024 × 768 RGB images. Compared with existing designs in this field, the proposed design has higher data throughput and is suitable for high-resolution real-time image enhancement applications.
  • loading
  • [1]
    陈勇, 陈东, 刘焕淋, 等. 基于深度卷积神经网络的无参考低照度图像增强[J]. 电子与信息学报, 2022, 44(6): 2166–2174. doi: 10.11999/JEIT210386

    CHEN Yong, CHEN Dong, LIU Huanlin, et al. Unreferenced low-lighting image enhancement based on deep convolutional neural network[J]. Journal of Electronics &Information Technology, 2022, 44(6): 2166–2174. doi: 10.11999/JEIT210386
    [2]
    VELUCHAMY M, BHANDARI A K, and SUBRAMANI B. Optimized bezier curve based intensity mapping scheme for low light image enhancement[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6(3): 602–612. doi: 10.1109/TETCI.2021.3053253
    [3]
    KIM W. Low-light image enhancement: a comparative review and prospects[J]. IEEE Access, 2022, 10: 84535–84557. doi: 10.1109/ACCESS.2022.3197629
    [4]
    YANG Kaifu, ZHANG Xianshi, and LI Yongjie. A biological vision inspired framework for image enhancement in poor visibility conditions[J]. IEEE Transactions on Image Processing, 2020, 29: 1493–1506. doi: 10.1109/TIP.2019.2938310
    [5]
    向森, 王应锋, 邓慧萍, 等. 基于双重迭代的零样本低照度图像增强[J]. 电子与信息学报, 2022, 44(10): 3379–3388. doi: 10.11999/JEIT211593

    XIANG Sen, WANG Yingfeng, DENG Huiping, et al. Zero-shot learning for low-light image enhancement based on dual iteration[J]. Journal of Electronics &Information Technology, 2022, 44(10): 3379–3388. doi: 10.11999/JEIT211593
    [6]
    LI Chongyi, GUO Chunle, HAN Linghao, et al. Low-light image and video enhancement using deep learning: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 9396–9416. doi: 10.1109/TPAMI.2021.3126387
    [7]
    LI Mading, LIU Jiaying, YANG Wenhan, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828–2841. doi: 10.1109/TIP.2018.2810539
    [8]
    JIANG Xuesong, YAO Hongxun, and LIU Dilin. Nighttime image enhancement based on image decomposition[J]. Signal, Image and Video Processing, 2019, 13(1): 189–197. doi: 10.1007/s11760-018-1345-2
    [9]
    GUO Xiaojie, LI Yu, and LING Haibin. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982–993. doi: 10.1109/TIP.2016.2639450
    [10]
    YANG Wenhan, WANG Wenjing, HUANG Haofeng, et al. Sparse gradient regularized deep retinex network for robust low-light image enhancement[J]. IEEE Transactions on Image Processing, 2021, 30: 2072–2086. doi: 10.1109/TIP.2021.3050850
    [11]
    ZHANG Yonghua, GUO Xiaojie, MA jiayi, et al. Beyond brightening low-light images[J]. International Journal of Computer Vision, 2021, 129(4): 1013–1037. doi: 10.1007/s11263-020-01407-x
    [12]
    LIU Risheng, MA Long, ZHANG Jiaao, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10556–10565.
    [13]
    MA Long, LIU Risheng, WANG Yiyang, et al. Low-light image enhancement via self-reinforced retinex projection model[J]. IEEE Transactions on Multimedia, To be published.
    [14]
    GUO Xiaojie and HU Qiming. Low-light image enhancement via breaking down the darkness[J]. International Journal of Computer Vision, 2023, 131(1): 48–66. doi: 10.1007/s11263-022-01667-9
    [15]
    ZHANG Xianshi, YANG Kaifu, ZHOU Jun, et al. Retina inspired tone mapping method for high dynamic range images[J]. Optics Express, 2020, 28(5): 5953–5964. doi: 10.1364/OE.380555
    [16]
    YANG Kaifu, CHENG Cheng, ZHAO Shixuan, et al. Learning to adapt to light[J]. International Journal of Computer Vision, 2023, 131(4): 1022–1041. doi: 10.1007/s11263-022-01745-y
    [17]
    LIU Xiaokai, MA Weihao, MA Xiaorui, et al. LAE-Net: A locally-adaptive embedding network for low-light image enhancement[J]. Pattern Recognition, 2023, 133: 109039. doi: 10.1016/j.patcog.2022.109039
    [18]
    HAI Jiang, XUAN Zhu, YANG Ren, et al. R2RNet: Low-light image enhancement via real-low to real-normal network[J]. Journal of Visual Communication and Image Representation, 2023, 90: 103712. doi: 10.1016/j.jvcir.2022.103712
    [19]
    WU Yuhui, PAN Chen, WANG Guoqing, et al. Learning semantic-aware knowledge guidance for low-light image enhancement[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023.
    [20]
    FUTSCHIK D, RITLAND K, VECORE J, et al. Controllable light diffusion for portraits[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023.
    [21]
    UREÑA R, MARTÍNEZ-CAÑADA P, GÓMEZ-LÓPEZ J M, et al. Real-time tone mapping on GPU and FPGA[J]. EURASIP Journal on Image and Video Processing, 2012, 2012: 1. doi: 10.1186/1687-5281-2012-1
    [22]
    LAPRAY P J, HEYRMAN B, and GINHAC D. HDR-ARtiSt: An adaptive real-time smart camera for high dynamic range imaging[J]. Journal of Real-Time Image Processing, 2016, 12(4): 747–762. doi: 10.1007/s11554-013-0393-7
    [23]
    CAÑADA P M, MORILLAS C, UREÑA R, et al. Embedded system for contrast enhancement in low-vision[J]. Journal of Systems Architecture, 2013, 59(1): 30–38. doi: 10.1016/j.sysarc.2012.10.005
    [24]
    JOSEPH L M I L and RAJARAJAN S. Reconfigurable hybrid vision enhancement system using tone mapping and adaptive gamma correction algorithm for night surveillance robot[J]. Multimedia Tools and Applications, 2019, 78(5): 6013–6032. doi: 10.1007/s11042-018-6321-x
    [25]
    AMBALATHANKANDY P, IKEBE M, YOSHIDA T, et al. An adaptive global and local tone mapping algorithm implemented on FPGA[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(9): 3015–3028. doi: 10.1109/TCSVT.2019.2931510
    [26]
    YANG Jie, HORE A, and YADID-PECHT O. Local tone mapping algorithm and hardware implementation[J]. Electronics Letters, 2018, 54(9): 560–562. doi: 10.1049/el.2017.3227
    [27]
    SHAHNOVICH U, HORE A, and YADID-PECHT O. Hardware implementation of a real-time tone mapping algorithm based on a mantissa-exponent representation[C]. 2016 IEEE International Symposium on Circuits and Systems, Montreal, Canada, 2016: 2210–2213.
    [28]
    AMBALATHANKANDY P, HORÉ A, and YADID-PECHT O. An FPGA implementation of a tone mapping algorithm with a halo-reducing filter[J]. Journal of Real-Time Image Processing, 2019, 16(4): 1317–1333. doi: 10.1007/s11554-016-0635-6
    [29]
    FAIRCHILD M D. Seeing, adapting to, and reproducing the appearance of nature[J]. Applied Optics, 2015, 54(4): B107–B116. doi: 10.1364/AO.54.00B107
    [30]
    CAI Jianrui, GU Shuhang, and ZHANG Lei. Learning a deep single image contrast enhancer from multi-exposure images[J]. IEEE Transactions on Image Processing, 2018, 27(4): 2049–2062. doi: 10.1109/TIP.2018.2794218
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (578) PDF downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return