Citation: | ZHANG Xianshi, SONG Jian, SONG Sijin, LI Yongjie. Design of Biological-inspired Low-light Video Adaptive Enhancement and FPGA Accelerated Implementation[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2739-2748. doi: 10.11999/JEIT221346 |
[1] |
陈勇, 陈东, 刘焕淋, 等. 基于深度卷积神经网络的无参考低照度图像增强[J]. 电子与信息学报, 2022, 44(6): 2166–2174. doi: 10.11999/JEIT210386
CHEN Yong, CHEN Dong, LIU Huanlin, et al. Unreferenced low-lighting image enhancement based on deep convolutional neural network[J]. Journal of Electronics &Information Technology, 2022, 44(6): 2166–2174. doi: 10.11999/JEIT210386
|
[2] |
VELUCHAMY M, BHANDARI A K, and SUBRAMANI B. Optimized bezier curve based intensity mapping scheme for low light image enhancement[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6(3): 602–612. doi: 10.1109/TETCI.2021.3053253
|
[3] |
KIM W. Low-light image enhancement: a comparative review and prospects[J]. IEEE Access, 2022, 10: 84535–84557. doi: 10.1109/ACCESS.2022.3197629
|
[4] |
YANG Kaifu, ZHANG Xianshi, and LI Yongjie. A biological vision inspired framework for image enhancement in poor visibility conditions[J]. IEEE Transactions on Image Processing, 2020, 29: 1493–1506. doi: 10.1109/TIP.2019.2938310
|
[5] |
向森, 王应锋, 邓慧萍, 等. 基于双重迭代的零样本低照度图像增强[J]. 电子与信息学报, 2022, 44(10): 3379–3388. doi: 10.11999/JEIT211593
XIANG Sen, WANG Yingfeng, DENG Huiping, et al. Zero-shot learning for low-light image enhancement based on dual iteration[J]. Journal of Electronics &Information Technology, 2022, 44(10): 3379–3388. doi: 10.11999/JEIT211593
|
[6] |
LI Chongyi, GUO Chunle, HAN Linghao, et al. Low-light image and video enhancement using deep learning: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 9396–9416. doi: 10.1109/TPAMI.2021.3126387
|
[7] |
LI Mading, LIU Jiaying, YANG Wenhan, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828–2841. doi: 10.1109/TIP.2018.2810539
|
[8] |
JIANG Xuesong, YAO Hongxun, and LIU Dilin. Nighttime image enhancement based on image decomposition[J]. Signal, Image and Video Processing, 2019, 13(1): 189–197. doi: 10.1007/s11760-018-1345-2
|
[9] |
GUO Xiaojie, LI Yu, and LING Haibin. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982–993. doi: 10.1109/TIP.2016.2639450
|
[10] |
YANG Wenhan, WANG Wenjing, HUANG Haofeng, et al. Sparse gradient regularized deep retinex network for robust low-light image enhancement[J]. IEEE Transactions on Image Processing, 2021, 30: 2072–2086. doi: 10.1109/TIP.2021.3050850
|
[11] |
ZHANG Yonghua, GUO Xiaojie, MA jiayi, et al. Beyond brightening low-light images[J]. International Journal of Computer Vision, 2021, 129(4): 1013–1037. doi: 10.1007/s11263-020-01407-x
|
[12] |
LIU Risheng, MA Long, ZHANG Jiaao, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10556–10565.
|
[13] |
MA Long, LIU Risheng, WANG Yiyang, et al. Low-light image enhancement via self-reinforced retinex projection model[J]. IEEE Transactions on Multimedia, To be published.
|
[14] |
GUO Xiaojie and HU Qiming. Low-light image enhancement via breaking down the darkness[J]. International Journal of Computer Vision, 2023, 131(1): 48–66. doi: 10.1007/s11263-022-01667-9
|
[15] |
ZHANG Xianshi, YANG Kaifu, ZHOU Jun, et al. Retina inspired tone mapping method for high dynamic range images[J]. Optics Express, 2020, 28(5): 5953–5964. doi: 10.1364/OE.380555
|
[16] |
YANG Kaifu, CHENG Cheng, ZHAO Shixuan, et al. Learning to adapt to light[J]. International Journal of Computer Vision, 2023, 131(4): 1022–1041. doi: 10.1007/s11263-022-01745-y
|
[17] |
LIU Xiaokai, MA Weihao, MA Xiaorui, et al. LAE-Net: A locally-adaptive embedding network for low-light image enhancement[J]. Pattern Recognition, 2023, 133: 109039. doi: 10.1016/j.patcog.2022.109039
|
[18] |
HAI Jiang, XUAN Zhu, YANG Ren, et al. R2RNet: Low-light image enhancement via real-low to real-normal network[J]. Journal of Visual Communication and Image Representation, 2023, 90: 103712. doi: 10.1016/j.jvcir.2022.103712
|
[19] |
WU Yuhui, PAN Chen, WANG Guoqing, et al. Learning semantic-aware knowledge guidance for low-light image enhancement[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023.
|
[20] |
FUTSCHIK D, RITLAND K, VECORE J, et al. Controllable light diffusion for portraits[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023.
|
[21] |
UREÑA R, MARTÍNEZ-CAÑADA P, GÓMEZ-LÓPEZ J M, et al. Real-time tone mapping on GPU and FPGA[J]. EURASIP Journal on Image and Video Processing, 2012, 2012: 1. doi: 10.1186/1687-5281-2012-1
|
[22] |
LAPRAY P J, HEYRMAN B, and GINHAC D. HDR-ARtiSt: An adaptive real-time smart camera for high dynamic range imaging[J]. Journal of Real-Time Image Processing, 2016, 12(4): 747–762. doi: 10.1007/s11554-013-0393-7
|
[23] |
CAÑADA P M, MORILLAS C, UREÑA R, et al. Embedded system for contrast enhancement in low-vision[J]. Journal of Systems Architecture, 2013, 59(1): 30–38. doi: 10.1016/j.sysarc.2012.10.005
|
[24] |
JOSEPH L M I L and RAJARAJAN S. Reconfigurable hybrid vision enhancement system using tone mapping and adaptive gamma correction algorithm for night surveillance robot[J]. Multimedia Tools and Applications, 2019, 78(5): 6013–6032. doi: 10.1007/s11042-018-6321-x
|
[25] |
AMBALATHANKANDY P, IKEBE M, YOSHIDA T, et al. An adaptive global and local tone mapping algorithm implemented on FPGA[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(9): 3015–3028. doi: 10.1109/TCSVT.2019.2931510
|
[26] |
YANG Jie, HORE A, and YADID-PECHT O. Local tone mapping algorithm and hardware implementation[J]. Electronics Letters, 2018, 54(9): 560–562. doi: 10.1049/el.2017.3227
|
[27] |
SHAHNOVICH U, HORE A, and YADID-PECHT O. Hardware implementation of a real-time tone mapping algorithm based on a mantissa-exponent representation[C]. 2016 IEEE International Symposium on Circuits and Systems, Montreal, Canada, 2016: 2210–2213.
|
[28] |
AMBALATHANKANDY P, HORÉ A, and YADID-PECHT O. An FPGA implementation of a tone mapping algorithm with a halo-reducing filter[J]. Journal of Real-Time Image Processing, 2019, 16(4): 1317–1333. doi: 10.1007/s11554-016-0635-6
|
[29] |
FAIRCHILD M D. Seeing, adapting to, and reproducing the appearance of nature[J]. Applied Optics, 2015, 54(4): B107–B116. doi: 10.1364/AO.54.00B107
|
[30] |
CAI Jianrui, GU Shuhang, and ZHANG Lei. Learning a deep single image contrast enhancer from multi-exposure images[J]. IEEE Transactions on Image Processing, 2018, 27(4): 2049–2062. doi: 10.1109/TIP.2018.2794218
|