Advanced Search
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
BAI Peirui, LI Zheng, LIU Qingyi, WANG Meng, BI Lijun, REN Yande, WANG Chengjian. Automatic Kidney CT Images Segmentation Algorithm Based on 3D Fuzzy Connectedness and Pulse Coupled Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2264-2272. doi: 10.11999/JEIT221252
Citation: BAI Peirui, LI Zheng, LIU Qingyi, WANG Meng, BI Lijun, REN Yande, WANG Chengjian. Automatic Kidney CT Images Segmentation Algorithm Based on 3D Fuzzy Connectedness and Pulse Coupled Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2264-2272. doi: 10.11999/JEIT221252

Automatic Kidney CT Images Segmentation Algorithm Based on 3D Fuzzy Connectedness and Pulse Coupled Neural Network

doi: 10.11999/JEIT221252
Funds:  The National Natural Science Foundation of China (61471225)
  • Received Date: 2022-09-27
  • Rev Recd Date: 2022-12-08
  • Available Online: 2022-12-09
  • Publish Date: 2023-06-10
  • Automatic and accurate segmentation of 3D kidney CT image is of great significance to reduce the workload of doctors and improve the efficiency of computer-aided diagnosis. However, due to the structural complexity of kidney organs and the gray similarity of adjacent parts, accurate segmentation of 3D kidney is still challenging. Based on the characteristics of simple structure and few parameters of Simplified Pulse Coupled Neural Network (SPCNN), combined with Fuzzy Connectedness (FC) algorithm, an automatic segmentation algorithm of three-dimensional kidney CT images is proposed in this paper. The main contributions of this paper are as follows: The 2D SPCNN is extended to 3D SPCNN, which can make full use of the inter-layer information of 3D CT images. A 3D seed point automatic generation strategy based on the centroid of region of interest is proposed, which can effectively improve the automatic segmentation efficiency of the algorithm. Effective coupling of 3D FC response map and 3D SPCNN is realized. The proposed algorithm is validated on self-made and public datasets, and the results show that the performance of the proposed algorithm is better than that of the existing mainstream algorithms. The average values of Dice coefficient, accuracy, sensitivity, volume error and average symmetric surface distance can achieve 0.9095, 0.9969, 0.8517, 0.1749 and 0.8536 respectively.
  • loading
  • [1]
    VAZIRI N D. Silva's diagnostic renal pathology[J]. Kidney International, 2010, 77(11): 939–940. doi: 10.1038/ki.2009.392
    [2]
    DOI K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential[J]. Computerized Medical Imaging and Graphics, 2007, 31(4/5): 198–211. doi: 10.1016/j.compmedimag.2007.02.002
    [3]
    TORRES H R, QUEIRÓS S, MORAIS P, et al. Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: A systematic review[J]. Computer Methods and Programs in Biomedicine, 2018, 157: 49–67. doi: 10.1016/j.cmpb.2018.01.014
    [4]
    ZHANG Pin, LIANG Yanmei, CHANG Shengjiang, et al. Kidney segmentation in CT sequences using graph cuts based active contours model and contextual continuity[J]. Medical Physics, 2013, 40(8): 081905. doi: 10.1118/1.4812428
    [5]
    LES T, MARKIEWICZ T, DZIEKIEWICZ M, et al. Adaptive two-way sweeping method to 3D kidney reconstruction[J]. Biomedical Signal Processing and Control, 2021, 67: 102544. doi: 10.1016/j.bspc.2021.102544
    [6]
    JIN Chao, SHI Fei, XIANG Dehui, et al. 3D fast automatic segmentation of kidney based on modified AAM and random forest[J]. IEEE Transactions on Medical Imaging, 2016, 35(6): 1395–1407. doi: 10.1109/TMI.2015.2512606
    [7]
    KHALIFA F, SOLIMAN A, TAKIELDEEN A, et al. Kidney segmentation from CT images using a 3D NMF-guided active contour model[C]. The 2016 IEEE 13th International Symposium on Biomedical Imaging, Prague, Czech Republic, 2016: 432–435.
    [8]
    QAYYUM A, LALANDE A, and MERIAUDEAU F. Automatic segmentation of tumors and affected organs in the abdomen using a 3D hybrid model for computed tomography imaging[J]. Computers in Biology and Medicine, 2020, 127: 104097. doi: 10.1016/j.compbiomed.2020.104097
    [9]
    胡敏, 周秀东, 黄宏程, 等. 基于改进U型神经网络的脑出血CT图像分割[J]. 电子与信息学报, 2022, 44(1): 127–137. doi: 10.11999/JEIT200996

    HU Min, ZHOU Xiudong, HUANG Hongcheng, et al. Computed-tomography image segmentation of cerebral hemorrhage based on improved U-shaped Neural Network[J]. Journal of Electronics &Information Technology, 2022, 44(1): 127–137. doi: 10.11999/JEIT200996
    [10]
    刘侠, 甘权, 刘晓, 等. 基于超像素的联合能量主动轮廓CT图像分割方法[J]. 光电工程, 2020, 47(1): 190104. doi: 10.12086/oee.2020.190104

    LIU Xia, GAN Quan, LIU Xiao, et al. Joint energy active contour CT image segmentation method based on super-pixel[J]. Opto-Electronic Engineering, 2020, 47(1): 190104. doi: 10.12086/oee.2020.190104
    [11]
    ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: Learning dense volumetric segmentation from sparse annotation[C]. The 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 2016: 424–432.
    [12]
    KANG Li, ZHOU Ziqi, HUANG Jianjun, et al. Renal tumors segmentation in abdomen CT Images using 3D-CNN and ConvLSTM[J]. Biomedical Signal Processing and Control, 2022, 72: 103334. doi: 10.1016/j.bspc.2021.103334
    [13]
    ZHAN Kun, SHI Jinhui, WANG Haibo, et al. Computational mechanisms of pulse-coupled neural networks: A comprehensive review[J]. Archives of Computational Methods in Engineering, 2017, 24(3): 573–588. doi: 10.1007/s11831-016-9182-3
    [14]
    BAI Peirui, YANG Kai, MIN Xiaolin, et al. A novel framework for improving Pulse-Coupled Neural Networks with fuzzy connectedness for medical image segmentation[J]. IEEE Access, 2020, 8: 138129–138140. doi: 10.1109/ACCESS.2020.3012160
    [15]
    郑瑾, 柳肃, 孙炜. 用于自动识别遥感图像路网信息的改进模糊连接度方法[J]. 电子与信息学报, 2016, 38(2): 413–417. doi: 10.11999/JEIT150563

    ZHENG Jin, LIU Su, and SUN Wei. An improved fuzzy connectedness method to recognize automatically the road network information from remote sensing image[J]. Journal of Electronics &Information Technology, 2016, 38(2): 413–417. doi: 10.11999/JEIT150563
    [16]
    DE MORAES BRAZ C, MIRANDA P A V, CIESIELSKI K C, et al. Optimum cuts in graphs by general fuzzy connectedness with local band constraints[J]. Journal of Mathematical Imaging and Vision, 2020, 62(5): 659–672. doi: 10.1007/s10851-020-00953-w
    [17]
    张睿, 吴薇薇, 周著黄, 等. 基于改进模糊连接度的CT图像肝脏血管三维分割方法[J]. 中国生物医学工程学报, 2019, 38(1): 18–27. doi: 10.3969/j.issn.0258-8021.2019.01.003

    ZHANG Rui, WU Weiwei, ZHOU Zhuhuang, et al. A three-dimensional liver vessel segmentation method for CT images using improved fuzzy connectedness[J]. Chinese Journal of Biomedical Engineering, 2019, 38(1): 18–27. doi: 10.3969/j.issn.0258-8021.2019.01.003
    [18]
    李彬, 陈武凡. 基于模糊连接度的多发性硬化症MR图像自动分割算法[J]. 中国生物医学工程学报, 2007, 26(5): 664–668. doi: 10.3969/j.issn.0258-8021.2007.05.005

    LI Bin and CHEN Wufan. Automated segmentation of multiple sclerosis lesions using fuzzy connectedness for MR images[J]. Chinese Journal of Biomedical Engineering, 2007, 26(5): 664–668. doi: 10.3969/j.issn.0258-8021.2007.05.005
    [19]
    ECKHORN R, REITBOECK H J, ARNDT M, et al. Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex[J]. Neural Computation, 1990, 2(3): 293–307. doi: 10.1162/neco.1990.2.3.293
    [20]
    CHEN Yuli, PARK S K, MA Yide, et al. A new automatic parameter Setting method of a simplified PCNN for image segmentation[J]. IEEE Transactions on Neural Networks, 2011, 22(6): 880–892. doi: 10.1109/TNN.2011.2128880
    [21]
    UDUPA J K and SAMARASEKERA S. Fuzzy connectedness and object definition: Theory, algorithms, and applications in image segmentation[J]. Graphical Models and Image Processing, 1996, 58(3): 246–261. doi: 10.1006/gmip.1996.0021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (380) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return