Citation: | BAI Peirui, LI Zheng, LIU Qingyi, WANG Meng, BI Lijun, REN Yande, WANG Chengjian. Automatic Kidney CT Images Segmentation Algorithm Based on 3D Fuzzy Connectedness and Pulse Coupled Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2264-2272. doi: 10.11999/JEIT221252 |
[1] |
VAZIRI N D. Silva's diagnostic renal pathology[J]. Kidney International, 2010, 77(11): 939–940. doi: 10.1038/ki.2009.392
|
[2] |
DOI K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential[J]. Computerized Medical Imaging and Graphics, 2007, 31(4/5): 198–211. doi: 10.1016/j.compmedimag.2007.02.002
|
[3] |
TORRES H R, QUEIRÓS S, MORAIS P, et al. Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: A systematic review[J]. Computer Methods and Programs in Biomedicine, 2018, 157: 49–67. doi: 10.1016/j.cmpb.2018.01.014
|
[4] |
ZHANG Pin, LIANG Yanmei, CHANG Shengjiang, et al. Kidney segmentation in CT sequences using graph cuts based active contours model and contextual continuity[J]. Medical Physics, 2013, 40(8): 081905. doi: 10.1118/1.4812428
|
[5] |
LES T, MARKIEWICZ T, DZIEKIEWICZ M, et al. Adaptive two-way sweeping method to 3D kidney reconstruction[J]. Biomedical Signal Processing and Control, 2021, 67: 102544. doi: 10.1016/j.bspc.2021.102544
|
[6] |
JIN Chao, SHI Fei, XIANG Dehui, et al. 3D fast automatic segmentation of kidney based on modified AAM and random forest[J]. IEEE Transactions on Medical Imaging, 2016, 35(6): 1395–1407. doi: 10.1109/TMI.2015.2512606
|
[7] |
KHALIFA F, SOLIMAN A, TAKIELDEEN A, et al. Kidney segmentation from CT images using a 3D NMF-guided active contour model[C]. The 2016 IEEE 13th International Symposium on Biomedical Imaging, Prague, Czech Republic, 2016: 432–435.
|
[8] |
QAYYUM A, LALANDE A, and MERIAUDEAU F. Automatic segmentation of tumors and affected organs in the abdomen using a 3D hybrid model for computed tomography imaging[J]. Computers in Biology and Medicine, 2020, 127: 104097. doi: 10.1016/j.compbiomed.2020.104097
|
[9] |
胡敏, 周秀东, 黄宏程, 等. 基于改进U型神经网络的脑出血CT图像分割[J]. 电子与信息学报, 2022, 44(1): 127–137. doi: 10.11999/JEIT200996
HU Min, ZHOU Xiudong, HUANG Hongcheng, et al. Computed-tomography image segmentation of cerebral hemorrhage based on improved U-shaped Neural Network[J]. Journal of Electronics &Information Technology, 2022, 44(1): 127–137. doi: 10.11999/JEIT200996
|
[10] |
刘侠, 甘权, 刘晓, 等. 基于超像素的联合能量主动轮廓CT图像分割方法[J]. 光电工程, 2020, 47(1): 190104. doi: 10.12086/oee.2020.190104
LIU Xia, GAN Quan, LIU Xiao, et al. Joint energy active contour CT image segmentation method based on super-pixel[J]. Opto-Electronic Engineering, 2020, 47(1): 190104. doi: 10.12086/oee.2020.190104
|
[11] |
ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: Learning dense volumetric segmentation from sparse annotation[C]. The 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 2016: 424–432.
|
[12] |
KANG Li, ZHOU Ziqi, HUANG Jianjun, et al. Renal tumors segmentation in abdomen CT Images using 3D-CNN and ConvLSTM[J]. Biomedical Signal Processing and Control, 2022, 72: 103334. doi: 10.1016/j.bspc.2021.103334
|
[13] |
ZHAN Kun, SHI Jinhui, WANG Haibo, et al. Computational mechanisms of pulse-coupled neural networks: A comprehensive review[J]. Archives of Computational Methods in Engineering, 2017, 24(3): 573–588. doi: 10.1007/s11831-016-9182-3
|
[14] |
BAI Peirui, YANG Kai, MIN Xiaolin, et al. A novel framework for improving Pulse-Coupled Neural Networks with fuzzy connectedness for medical image segmentation[J]. IEEE Access, 2020, 8: 138129–138140. doi: 10.1109/ACCESS.2020.3012160
|
[15] |
郑瑾, 柳肃, 孙炜. 用于自动识别遥感图像路网信息的改进模糊连接度方法[J]. 电子与信息学报, 2016, 38(2): 413–417. doi: 10.11999/JEIT150563
ZHENG Jin, LIU Su, and SUN Wei. An improved fuzzy connectedness method to recognize automatically the road network information from remote sensing image[J]. Journal of Electronics &Information Technology, 2016, 38(2): 413–417. doi: 10.11999/JEIT150563
|
[16] |
DE MORAES BRAZ C, MIRANDA P A V, CIESIELSKI K C, et al. Optimum cuts in graphs by general fuzzy connectedness with local band constraints[J]. Journal of Mathematical Imaging and Vision, 2020, 62(5): 659–672. doi: 10.1007/s10851-020-00953-w
|
[17] |
张睿, 吴薇薇, 周著黄, 等. 基于改进模糊连接度的CT图像肝脏血管三维分割方法[J]. 中国生物医学工程学报, 2019, 38(1): 18–27. doi: 10.3969/j.issn.0258-8021.2019.01.003
ZHANG Rui, WU Weiwei, ZHOU Zhuhuang, et al. A three-dimensional liver vessel segmentation method for CT images using improved fuzzy connectedness[J]. Chinese Journal of Biomedical Engineering, 2019, 38(1): 18–27. doi: 10.3969/j.issn.0258-8021.2019.01.003
|
[18] |
李彬, 陈武凡. 基于模糊连接度的多发性硬化症MR图像自动分割算法[J]. 中国生物医学工程学报, 2007, 26(5): 664–668. doi: 10.3969/j.issn.0258-8021.2007.05.005
LI Bin and CHEN Wufan. Automated segmentation of multiple sclerosis lesions using fuzzy connectedness for MR images[J]. Chinese Journal of Biomedical Engineering, 2007, 26(5): 664–668. doi: 10.3969/j.issn.0258-8021.2007.05.005
|
[19] |
ECKHORN R, REITBOECK H J, ARNDT M, et al. Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex[J]. Neural Computation, 1990, 2(3): 293–307. doi: 10.1162/neco.1990.2.3.293
|
[20] |
CHEN Yuli, PARK S K, MA Yide, et al. A new automatic parameter Setting method of a simplified PCNN for image segmentation[J]. IEEE Transactions on Neural Networks, 2011, 22(6): 880–892. doi: 10.1109/TNN.2011.2128880
|
[21] |
UDUPA J K and SAMARASEKERA S. Fuzzy connectedness and object definition: Theory, algorithms, and applications in image segmentation[J]. Graphical Models and Image Processing, 1996, 58(3): 246–261. doi: 10.1006/gmip.1996.0021
|