Wu Yingliang, Wei Gang, Li Haizhou. A WORD SEGMENTATION ALGORITHM FOR CHINESE LANGUAGE BASED ON N-GRAM MODELS AND MACHINE LEARNING[J]. Journal of Electronics & Information Technology, 2001, 23(11): 1148-1153.
Citation:
WANG Yu, KAI Xiaoshan, ZHU Shixin. A Construction Method of Quantum Error-correcting Codes over ${\boldsymbol F_{{2^m}}}$[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1731-1736. doi: 10.11999/JEIT221145
Wu Yingliang, Wei Gang, Li Haizhou. A WORD SEGMENTATION ALGORITHM FOR CHINESE LANGUAGE BASED ON N-GRAM MODELS AND MACHINE LEARNING[J]. Journal of Electronics & Information Technology, 2001, 23(11): 1148-1153.
Citation:
WANG Yu, KAI Xiaoshan, ZHU Shixin. A Construction Method of Quantum Error-correcting Codes over ${\boldsymbol F_{{2^m}}}$[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1731-1736. doi: 10.11999/JEIT221145
School of Artificial Intelligence and Big Data, Hefei University, Hefei 230601, China
2.
School of Mathematics, Hefei University of Technology, Hefei 230601, China
Funds:
The National Natural Science Foundation of China (12171134, U21A20428), The Key Project of Support Program for Outstanding Young Talents in University of Anhui Province (gxyqZD2021137)
Constructing quantum codes with good parameters is an important part of quantum error-correcting codes research. In this paper, $ {2^m} $-ary quantum codes are derived through Hermitian dual-containing constacyclic codes over finite non-chain ring $ R = {F_{{4^m}}} + v{F_{{4^m}}} $. A new Gray map $ \phi $ is defined, which is Hermitian dual-containing preserving from a linear code C over R to $ \phi (C) $. The condition for constacyclic codes over R to be Hermitian dual-containing is studied. A method of constructing $ {2^m} $-ary quantum codes is presented, and some new 4-ary and 8-ary quantum codes are obtained.
截至目前,有限环上常循环码相关文献中构造的量子码主要是二元[6,7]、$ p $元[8-10]和$ {p^m} $元[11-14]($ p $为奇素数),构造$ {2^m} $元量子码的研究还较为少见。本文通过非链环$ R = {F_{{4^m}}} + v{F_{{4^m}}} $上的常循环码来构造$ {2^m} $元量子码。首先定义了一个从环$ R $到域$ {F_{{4^m}}} $上的新Gray映射,然后确定了环$ R $上常循环码为厄米特对偶包含码的条件,最后给出了一种构造$ {2^m} $元量子码的新方法,并例举了一些新的4元和8元量子码。
2.
基础知识
记$ {F_{{4^m}}} $为$ {4^m} $元有限域,$ m $为正整数。令$R = {F_{{4^m}}} + v{F_{{4^m}}} = \{ a + vb|a,b \in {F_{{4^m}}}\}$,其中$ {v^2} = v $。容易验证,$ R $是一个有限非链环,且具有极大理想$ \langle 1 + v\rangle $和$ \langle v\rangle $。$ {R^n} $的$ R $-子模$ C $称为环$ R $上长为$ n $的线性码。记
CALDERBANK A R, RAINS E M, SHOR P M, et al. Quantum error correction via codes over GF(4)[J]. IEEE Transactions on Information Theory, 1998, 44(4): 1369–1387. doi: 10.1109/18.681315
[2]
ASHIKHMIN A and KNILL E. Nonbinary quantum stabilizer codes[J]. IEEE Transactions on Information Theory, 2001, 47(7): 3065–3072. doi: 10.1109/18.959288
[3]
KAI Xiaoshan, ZHU Shixin, and LI Ping. Constacyclic codes and some new quantum MDS codes[J]. IEEE Transactions on Information Theory, 2014, 60(4): 2080–2086. doi: 10.1109/TIT.2014.2308180
[4]
CHEN Bocong, LING San, and ZHANG Guanghui. Application of constacyclic codes to quantum MDS codes[J]. IEEE Transactions on Information Theory, 2015, 61(3): 1474–1484. doi: 10.1109/TIT.2015.2388576
ZHU Shixin, HUANG Shan, and LI Jin. Constacyclic Hermitian dual-containing codes over finite fields and their application[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1072–1078. doi: 10.11999/JEIT170735
[6]
QIAN Jianfa, MA Wenping, and GUO Wangmei. Quantum codes from cyclic codes over finite ring[J]. International Journal of Quantum Information, 2009, 7(6): 1277–1283. doi: 10.1142/S0219749909005560
[7]
QIAN Jianfa. Quantum codes from cyclic codes over $ {F_2} + v{F_2} $[J]. Journal of Information and Computational Science, 2013, 10(6): 1715–1722. doi: 10.12733/jics20101705
[8]
ASHRAF M and MOHAMMAD G. Construction of quantum codes from cyclic codes over $ {F_p} + v{F_p} $[J]. International Journal of Information and Coding Theory, 2015, 3(2): 137–144. doi: 10.1504/IJICOT.2015.072627
[9]
GAO Jian and WANG Yongkang. $ u $-Constacyclic codes over $ F_{P}+u F_{p} $ and their applications of constructing new non-binary quantum codes[J]. Quantum Information Processing, 2018, 17(1): 4. doi: 10.1007/s11128-017-1775-8
[10]
ALAHMADI A, ISLAM H, PRAKASH O, et al. New quantum codes from constacyclic codes over a non-chain ring[J]. Quantum Information Processing, 2021, 20(2): 60. doi: 10.1007/s11128-020-02977-y
[11]
ISLAM H, PRAKASH O, and VERMA R K. New quantum codes from constacyclic codes over the ring $ {R_{k, m}} $[J]. Advances in Mathematics of Communications, 2022, 16(1): 17–35. doi: 10.3934/amc.2020097
[12]
WANG Yu, KAI Xiaoshan, SUN Zhonghua, et al. Quantum codes from Hermitian dual-containing constacyclic codes over $ \mathbb{F}_{q^{2}}+v \mathbb{F}_{q^{2}} $[J]. Quantum Information Processing, 2021, 20(3): 122. doi: 10.1007/s11128-021-03052-w
[13]
SHI Xiaoping, HUANG Xinmei, and YUE Qin. Construction of new quantum codes derived from constacyclic codes over $ F_{q^{2}}+u F_{q^{2}}+\cdots+u^{r-1} F_{q^{2}} $[J]. Applicable Algebra in Engineering, Communication and Computing, 2021, 32(5): 603–620. doi: 10.1007/s00200-020-00415-1
[14]
ISLAM H, PATEL S, PRAKASH O, et al. A family of constacyclic codes over a class of non-chain rings $ {A_{q, r}} $ and new quantum codes[J]. Journal of Applied Mathematics and Computing, 2022, 68(4): 2493–2514. doi: 10.1007/s12190-021-01623-9
[15]
TANG Yongsheng, YAO Ting, SUN Zhonghua, et al. Nonbinary quantum codes from constacyclic codes over polynomial residue rings[J]. Quantum Information Processing, 2020, 19(3): 84. doi: 10.1007/s11128-020-2584-z
[16]
LIU Yan, SHI Minjia, SEPASDAR Z, et al. Construction of Hermitian self-dual constacyclic codes over $ {F_{{q^2}}} + v{F_{{q^2}}} $[J]. Applied and Computational Mathematics, 2016, 15(3): 359–369.
Wu Yingliang, Wei Gang, Li Haizhou. A WORD SEGMENTATION ALGORITHM FOR CHINESE LANGUAGE BASED ON N-GRAM MODELS AND MACHINE LEARNING[J]. Journal of Electronics & Information Technology, 2001, 23(11): 1148-1153.
Wu Yingliang, Wei Gang, Li Haizhou. A WORD SEGMENTATION ALGORITHM FOR CHINESE LANGUAGE BASED ON N-GRAM MODELS AND MACHINE LEARNING[J]. Journal of Electronics & Information Technology, 2001, 23(11): 1148-1153.