Citation: | ZENG Hong, CHEN Qingqing, LI Xiao, ZHANG Jianxi, SONG Aiguo. Research on Adaptive Enhancement Method of Rehabilitation Training Participation Based on Bayesian Optimization[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2770-2779. doi: 10.11999/JEIT221122 |
[1] |
《中国脑卒中防治报告》编写组. 《中国脑卒中防治报告2020》概要[J]. 中国脑血管病杂志, 2022, 19(2): 136–144. doi: 10.3969/j.issn.1672-5921.2022.02.011
Report on Stroke Prevention and Treatment in China Writing Group. Brief report on stroke prevention and treatment in China, 2020[J]. Chinese Journal of Cerebrovascular Diseases, 2022, 19(2): 136–144. doi: 10.3969/j.issn.1672-5921.2022.02.011
|
[2] |
NICHOLSON-SMITH C, MEHRABI V, ATASHZAR S F, et al. A multi-functional lower- and upper-limb stroke rehabilitation robot[J]. IEEE Transactions on Medical Robotics and Bionics, 2020, 2(4): 549–552. doi: 10.1109/TMRB.2020.3034497
|
[3] |
NAJAFI M, ROSSA C, ADAMS K, et al. Using potential field function with a velocity field controller to learn and reproduce the therapist's assistance in robot-assisted rehabilitation[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3): 1622–1633. doi: 10.1109/TMECH.2020.2981625
|
[4] |
MARCHAL-CRESPO L, MICHELS L, JAEGER L, et al. Effect of error augmentation on brain activation and motor learning of a complex locomotor task[J]. Frontiers in Neuroscience, 2017, 11: 526. doi: 10.3389/fnins.2017.00526
|
[5] |
CHOI G, LEE D, KANG I, et al. Effect of assistance timing in knee extensor muscle activation during sit-to-stand using a bilateral robotic knee exoskeleton[C]. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico, 2021: 4879–4882.
|
[6] |
WANG Jiaxing, WANG Weiqun, REN Shixin, et al. Engagement enhancement based on human-in-the-loop optimization for neural rehabilitation[J]. Frontiers in Neurorobotics, 2020, 14: 596019. doi: 10.3389/fnbot.2020.596019
|
[7] |
DING Ye, KIM M, KUINDERSMA S, et al. Human-in-the-loop optimization of hip assistance with a soft exosuit during walking[J]. Science Robotics, 2018, 3(15): eaar5438. doi: 10.1126/scirobotics.aar5438
|
[8] |
WU Qingcong and CHEN Ying. Development of an intention-based adaptive neural cooperative control strategy for upper-limb robotic rehabilitation[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 335–342. doi: 10.1109/LRA.2020.3043197
|
[9] |
PENG Zengqi and HUANG Jian. Improved proxy-based sliding mode control integrated adaptive dynamic programming for pneumatic muscle actuators[C]. 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), Chongqing, China, 2021: 424–429.
|
[10] |
彭亮, 侯增广, 王晨, 等. 康复辅助机器人及其物理人机交互方法[J]. 自动化学报, 2018, 44(11): 2000–2010. doi: 10.16383/j.aas.2018.c180209
PENG Liang, HOU Zengguang, WANG Chen, et al. Physical interaction methods for rehabilitation and assistive robots[J]. Acta Automatica Sinica, 2018, 44(11): 2000–2010. doi: 10.16383/j.aas.2018.c180209
|
[11] |
YANG Tao and GAO Xueshan. Adaptive neural sliding-mode controller for alternative control strategies in lower limb rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(1): 238–247. doi: 10.1109/TNSRE.2019.2946407
|
[12] |
REISMAN D S, MCLEAN H, KELLER J, et al. Repeated split-belt treadmill training improves poststroke step length asymmetry[J]. Neurorehabilitation and Neural Repair, 2013, 27(5): 460–468. doi: 10.1177/1545968312474118
|
[13] |
PORTA F, CELIAN C, and PATTON J L. Upper extremity functional rehabilitation for stroke survivors using error-augmented visual feedback: Interim results[C]. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico, 2021: 1318–1324.
|
[14] |
PATTON J, SMALL S L, and ZEV RYMER W. Functional restoration for the stroke survivor: informing the efforts of engineers[J]. Topics in Stroke Rehabilitation, 2008, 15(6): 521–541. doi: 10.1310/tsr1506-521
|
[15] |
舒智林, 李思宜, 于宁波, 等. 一种脑肢融合的神经康复训练在线评价与调整方法[J]. 自动化学报, 2022, 48(5): 1209–1219. doi: 10.16383/j.aas.c200452
SHU Zhilin, LI Siyi, YU Ningbo, et al. A brain-limb fusion approach to online assessment and adjustment of rehabilitation trainings[J]. Acta Automatica Sinica, 2022, 48(5): 1209–1219. doi: 10.16383/j.aas.c200452
|
[16] |
EMKEN J L, BOBROW J E, and REINKENSMEYER D J. Robotic movement training as an optimization problem: Designing a controller that assists only as needed[C]. 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, Chicago, USA, 2005: 307–312.
|
[17] |
WOLBRECHT E T, CHAN V, LE V, et al. Real-time computer modeling of weakness following stroke optimizes robotic assistance for movement therapy[C]. 2007 3rd International IEEE/EMBS Conference on Neural Engineering, Kohala Coast, USA, 2007: 152–158.
|
[18] |
TAHERI H, REINKENSMEYER D J, and WOLBRECHT E T. Model-based assistance-as-needed for robotic movement therapy after stroke[C]. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, USA, 2016: 2124–2127.
|
[19] |
CARMICHAEL M G and LIU Dikai. Estimating physical assistance need using a musculoskeletal model[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(7): 1912–1919. doi: 10.1109/TBME.2013.2244889
|
[20] |
MARCHAL-CRESPO L and REINKENSMEYER D J. Review of control strategies for robotic movement training after neurologic injury[J]. Journal of NeuroEngineering and Rehabilitation, 2009, 6: 20. doi: 10.1186/1743-0003-6-20
|
[21] |
DUARTE J E and REINKENSMEYER D J. Effects of robotically modulating kinematic variability on motor skill learning and motivation[J]. Journal of Neurophysiology, 2015, 113(7): 2682–2691. doi: 10.1152/jn.00163.2014
|
[22] |
IBARRA J C P, DOS SANTOS W M, KREBS H I, et al. Adaptive impedance control for robot-aided rehabilitation of ankle movements[C]. 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, 2014: 664–669.
|
[23] |
DARZI A and NOVAK D. Using physiological linkage for patient state assessment in a competitive rehabilitation game[C]. 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, Canada, 2019: 1031–1036.
|
[24] |
PENG Zhinan, CHENG Hong, HUANG Rui, et al. Adaptive event-triggered motion tracking control strategy for a lower limb rehabilitation exoskeleton[C]. 2021 60th IEEE Conference on Decision and Control (CDC), Austin, USA, 2021: 1795–1801.
|
[25] |
ZHANG Juanjuan, FIERS P, WITTE K A, et al. Human-in-the-loop optimization of exoskeleton assistance during walking[J]. Science, 2017, 356(6344): 1280–1284. doi: 10.1126/science.aal5054
|
[26] |
RAI A, ANTONOVA R, MEIER F, et al. Using simulation to improve sample-efficiency of Bayesian optimization for bipedal robots[J]. The Journal of Machine Learning Research, 2019, 20(1): 1844–1867.
|
[27] |
LITTELL R and RAMON C. Multiple comparison procedures[J]. Technometrics, 1993, 31(2): 261–262.
|