Advanced Search
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
YANG Lei, WANG Tengteng, CHEN Yingjie, GAI Minghui, XU Hanwen. Feature Reconstruction of High Resolution SAR Imagery Based on Low Rank Matrix Completion[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2965-2974. doi: 10.11999/JEIT220992
Citation: YANG Lei, WANG Tengteng, CHEN Yingjie, GAI Minghui, XU Hanwen. Feature Reconstruction of High Resolution SAR Imagery Based on Low Rank Matrix Completion[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2965-2974. doi: 10.11999/JEIT220992

Feature Reconstruction of High Resolution SAR Imagery Based on Low Rank Matrix Completion

doi: 10.11999/JEIT220992
Funds:  The National Natural Science Foundation of China (62271487)
  • Received Date: 2022-07-26
  • Rev Recd Date: 2022-10-09
  • Available Online: 2022-10-11
  • Publish Date: 2023-08-21
  • In a countermeasure electromagnetic environment, airborne Synthetic Aperture Radar (SAR) is prone to electronic interference, which makes some echo pulses unavailable, resulting in partial data loss of the SAR echo and limited imaging performance. Thus, a Feature Reconstruction SAR (FR-SAR) imaging algorithm based on low-rank matrix completion is proposed. By considering the low-rank characteristics of the echoed data, the nonzero column number of rows or columns is obtained through matrix decomposition, and the nonzero column number is convexly optimized by Factor Group-Sparse Regularization (FGSR) to obtain the correlation between SAR echoes, to achieve data completion. Additionally, the proposed algorithm in the rank function is more accurate than the conventional nuclear function. Meanwhile, a sparse prior is introduced into the regularization model to improve the noise suppression and super-resolution performance. The Alternating Direction Method of Multipliers (ADMM) is used to realize a collaborative solution between matrix completion and sparse feature enhancement. The FR-SAR algorithm is more efficient because it does not use Singular Value Decomposition (SVD). Simulated and measured data verify the effectiveness of the FR-SAR algorithm. The recovery abilities of the proposed and traditional algorithms are quantitatively compared using a Phase Transition Diagram (PTD), establishing the superiority of the FR-SAR algorithm.
  • loading
  • [1]
    ZHA Mingfeng, QIAN Wenbin, YANG Wenji, et al. Multifeature transformation and fusion-based ship detection with small targets and complex backgrounds[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4511405. doi: 10.1109/LGRS.2022.3192559
    [2]
    黄博, 周劼, 江舸. 基于全变分的高分辨SAR联合特征增强成像算法[J]. 红外与毫米波学报, 2021, 40(5): 664–672. doi: 10.11972/j.issn.1001-9014.2021.05.013

    HUANG Bo, ZHOU Jie, and JIANG Ge. Joint feature enhancement for high resolution SAR imaging based on total variation regularization[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 664–672. doi: 10.11972/j.issn.1001-9014.2021.05.013
    [3]
    杨磊, 张苏, 盖明慧, 等. 高分辨SAR目标成像方向性结构特征增强[J]. 系统工程与电子技术, 2022, 44(3): 808–818. doi: 10.12305/j.issn.1001-506X.2022.03.13

    YANG Lei, ZHANG Su, GAI Minghui, et al. High-resolution SAR imagery with enhancement of directional structure feature[J]. Systems Engineering and Electronics, 2022, 44(3): 808–818. doi: 10.12305/j.issn.1001-506X.2022.03.13
    [4]
    张思乾, 于美婷, 匡纲要. 一种低秩张量约束的下视稀疏线阵SAR三维成像算法[J]. 电子与信息学报, 2021, 43(6): 1667–1675. doi: 10.11999/JEIT200274

    ZHANG Siqian, YU Meiting, and KUANG Gangyao. A three-dimensional imaging algorithm of downward-looking sparse linear array SAR based on low-rank tensor[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1667–1675. doi: 10.11999/JEIT200274
    [5]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [6]
    MALEKI A, ANITORI L, YANG Zai, et al. Asymptotic analysis of complex LASSO via complex approximate message passing (CAMP)[J]. IEEE Transactions on Information Theory, 2013, 59(7): 4290–4308. doi: 10.1109/TIT.2013.2252232
    [7]
    杨磊, 李埔丞, 李慧娟, 等. 稳健高效通用SAR图像稀疏特征增强算法[J]. 电子与信息学报, 2019, 41(12): 2826–2835. doi: 10.11999/JEIT190173

    YANG Lei, LI Pucheng, LI Huijuan, et al. Robust and efficient sparse-feature enhancement for generalized SAR imagery[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2826–2835. doi: 10.11999/JEIT190173
    [8]
    VU T and RAICH R. Exact linear convergence rate analysis for low-rank symmetric matrix completion via gradient descent[C]. Proceedings of 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 3240–3244.
    [9]
    CANDES E J and RECHT B. Exact low-rank matrix completion via convex optimization[C]. Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing, Monticello, USA, 2008: 806–812.
    [10]
    YANG Dong, LIAO Guisheng, ZHU Shengqi, et al. SAR imaging with undersampled data via matrix completion[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1539–1543. doi: 10.1109/LGRS.2014.2300170
    [11]
    QIU Wei, ZHOU Jianxiong, and FU Qiang. Jointly using low-rank and sparsity priors for sparse inverse synthetic aperture radar imaging[J]. IEEE Transactions on Image Processing, 2020, 29: 100–115. doi: 10.1109/TIP.2019.2927458
    [12]
    FAN Jicong, DING Lijun, CHEN Yudong, et al. Factor group-sparse regularization for efficient low-rank matrix recovery[C]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 5104–5114.
    [13]
    PU Wei and WU Junjie. OSRanP: A novel way for radar imaging utilizing joint sparsity and low-rankness[J]. IEEE Transactions on Computational Imaging, 2020, 6: 868–882. doi: 10.1109/TCI.2020.2993170
    [14]
    MORADIKIA M, SAMADI S, and CETIN M. Joint SAR imaging and multi-feature decomposition from 2-D under-sampled data via low-rankness plus sparsity priors[J]. IEEE Transactions on Computational Imaging, 2019, 5(1): 1–16. doi: 10.1109/TCI.2018.2881530
    [15]
    BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
    [16]
    YANG Lei, XING Mengdao, WANG Yong, et al. Compensation for the NsRCM and phase error after polar format resampling for airborne spotlight SAR raw data of high resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 165–169. doi: 10.1109/LGRS.2012.2196676
    [17]
    ZHANG Shuanghui, LIU Yongxiang, and LI Xiang. Micro-Doppler effects removed sparse aperture ISAR imaging via low-rank and double sparsity constrained ADMM and linearized ADMM[J]. IEEE Transactions on Image Processing, 2021, 30: 4678–4690. doi: 10.1109/TIP.2021.3074271
    [18]
    YANG Lei, ZHAO Lifan, BI Guoan, et al. SAR ground moving target imaging algorithm based on parametric and dynamic sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2254–2267. doi: 10.1109/TGRS.2015.2498158
    [19]
    FAZEL M. Matrix rank minimization with applications[D]. [Ph. D. dissertation], Stanford University, 2001.
    [20]
    HASTIE T, TIBSHIRANI R, WAINWRIGHT M, 刘波, 景鹏杰, 译. 稀疏统计学习及其应用[M]. 北京: 人民邮电出版社, 2018: 103–104.

    HASTIE T, TIBSHIRANI R, WAINWRIGHT M, LIU Bo, JING Pengjie, translation. Statistical Learning with Sparsity: The Lasso and Generalizations[M]. Beijing: Posts & Telecom Press, 2018: 103–104.
    [21]
    杨磊, 张苏, 黄博, 等. 多任务协同优化学习高分辨SAR稀疏自聚焦成像算法[J]. 电子与信息学报, 2021, 43(9): 2711–2719. doi: 10.11999/JEIT200300

    YANG Lei, ZHANG Su, HUANG Bo, et al. Multi-task learning of sparse autofocusing for high-resolution SAR imagery[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2711–2719. doi: 10.11999/JEIT200300
    [22]
    谢朋飞, 张磊, 吴振华. 融合ω-K和BP算法的圆柱扫描毫米波三维成像算法[J]. 雷达学报, 2018, 7(3): 387–394. doi: 10.12000/JR17112

    XIE Pengfei, ZHANG Lei, and WU Zhenhua. A three-dimensional imaging algorithm fusion with ω-K and BP algorithm for millimeter-wave cylindrical scanning[J]. Journal of Radars, 2018, 7(3): 387–394. doi: 10.12000/JR17112
    [23]
    DONOHO D L and TANNER J. Precise undersampling theorems[J]. Proceedings of the IEEE, 2010, 98(6): 913–924. doi: 10.1109/JPROC.2010.2045630
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (586) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return