Citation: | GU Yu, ZHANG Hongyu, SUN Shicheng. Infrared Small Target Detection Model with Multi-scale Fractal Attention[J]. Journal of Electronics & Information Technology, 2023, 45(8): 3002-3011. doi: 10.11999/JEIT220919 |
[1] |
LI Zhongmin, MEI Lifei, and SONG Mao. A survey on infrared weak small target detection method[J]. Advanced Materials Research, 2014, 945/949: 1558–1560. doi: 10.4028/www.scientific.net/AMR.945-949.1558
|
[2] |
李俊宏, 张萍, 王晓玮, 等. 红外弱小目标检测算法综述[J]. 中国图像图形学报, 2020, 25(9): 1739–1753. doi: 10.11834/jig.190574
LI Junhong, ZHANG Ping, WANG Xiaowei, et al. Infrared small-target detection algorithms: A survey[J]. Journal of Image and Graphics, 2020, 25(9): 1739–1753. doi: 10.11834/jig.190574
|
[3] |
XU Yonghui and ZHANG J A. Real-time detection algorithm for small space targets based on max-median filter[J]. Journal of Information and Computational Science, 2014, 11(4): 1047–1055. doi: 10.12733/jics20102961
|
[4] |
吴健, 陆书文, 芮大庆, 等. 基于背景抑制的改进Top-Hat红外小目标检测方法[J]. 电光与控制, 2018, 25(9): 42–44. doi: 10.3969/j.issn.1671-637X.2018.09.009
WU Jian, LU Shuwen, RUI Daqing, et al. An improved Top-Hat infrared small target detection method based on background suppression[J]. Electronics Optics &Control, 2018, 25(9): 42–44. doi: 10.3969/j.issn.1671-637X.2018.09.009
|
[5] |
侯旺, 孙晓亮, 尚洋, 等. 红外弱小目标检测技术研究现状与发展趋势[J]. 红外技术, 2015, 37(1): 1–10.
HOU Wang, SUN Xiaoliang, SHANG Yang, et al. Present state and perspectives of small infrared targets detection technology[J]. Infrared Technology, 2015, 37(1): 1–10.
|
[6] |
CHEN C L P, LI Hong, WEI Yantao, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574–581. doi: 10.1109/TGRS.2013.2242477
|
[7] |
WEI Yantao, YOU Xinge, and LI Hong. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recognition, 2016, 58: 216–226. doi: 10.1016/j.patcog.2016.04.002
|
[8] |
GAO Chenqiang, MENG Deyu, YANG Yi, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996–5009. doi: 10.1109/TIP.2013.2281420
|
[9] |
WANG Huan, ZHOU Luping, and WANG Lei. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 8508–8517.
|
[10] |
刘俊明, 孟卫华. 融合全卷积神经网络和视觉显著性的红外小目标检测[J]. 光子学报, 2020, 49(7): 0710003. doi: 10.3788/gzxb20204907.0710003
LIU Junming and MENG Weihua. Infrared small target detection based on fully convolutional neural network and visual saliency[J]. Acta Photonica Sinica, 2020, 49(7): 0710003. doi: 10.3788/gzxb20204907.0710003
|
[11] |
DAI Yimian, WU Yiquan, ZHOU Fei, et al. Asymmetric contextual modulation for infrared small target detection[C]. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA, 2021: 949–958.
|
[12] |
DAI Yimian, WU Yiquan, ZHOU Fei, et al. Attentional local contrast networks for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9813–9824. doi: 10.1109/TGRS.2020.3044958
|
[13] |
YU Chuang, LIU Yunpeng, WU Shuhang, et al. Infrared small target detection based on multiscale local contrast learning networks[J]. Infrared Physics & Technology, 2022, 123: 104107. doi: 10.1016/j.infrared.2022.104107
|
[14] |
HUANG Lian, DAI Shaosheng, HUANG Tao, et al. Infrared small target segmentation with multiscale feature representation[J]. Infrared Physics & Technology, 2021, 116: 103755. doi: 10.1016/j.infrared.2021.103755
|
[15] |
ZHANG Tianfang, CAO Siying, PU Tian, et al. AGPCNet: Attention-guided pyramid context networks for infrared small target detection[EB/OL]. https://arxiv.org/abs/2111.03580, 2021.
|
[16] |
WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7794–7803.
|
[17] |
LI Boyang, XIAO Chao, WANG Longguang, et al. Dense nested attention network for infrared small target detection[J]. IEEE Transactions on Image Processing, 2023, 32: 1745–1758.
|
[18] |
ZHOU Z W, SIDDIQUEE M R, TAJBAKHSH N, et al. UNet++: A nested U-net architecture for medical image segmentation[C]. The 4th International Workshop on Deep Learning in Medical Image Analysis, Granada, Spain, 2018: 3–11.
|
[19] |
TONG Xiaozhong, SUN Bei, WEI Junyu, et al. EAAU-Net: Enhanced asymmetric attention U-Net for infrared small target detection[J]. Remote Sensing, 2021, 13(16): 3200. doi: 10.3390/rs13163200
|
[20] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
|
[21] |
谷雨, 刘俊, 沈宏海, 等. 基于改进多尺度分形特征的红外图像弱小目标检测[J]. 光学 精密工程, 2020, 28(6): 1375–1386. doi: 10.3788/OPE.20202806.1375
GU Yu, LIU Jun, SHEN Honghai, et al. Infrared dim-small target detection based on an improved multiscale fractal feature[J]. Optics and Precision Engineering, 2020, 28(6): 1375–1386. doi: 10.3788/OPE.20202806.1375
|
[22] |
LI Hanchao, XIONG Pengfei, AN Jie, et al. Pyramid attention network for semantic segmentation[C]. The British Machine Vision Conference 2018, Newcastle, UK, 2018: 285.
|
[23] |
ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2881–2890.
|
[24] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[25] |
JOCHER G. Yolov5[EB/OL]. Https://github.com/ultralytics/yolov5, 2020.
|
[26] |
ZHU Zhen, XU Mengdu, BAI Song, et al. Asymmetric non-local neural networks for semantic segmentation[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 593–602.
|
[27] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
|
[28] |
RAHMAN A and WANG Yang. Optimizing intersection-over-union in deep neural networks for image segmentation[C]. The 12th International Symposium on Visual Computing, Las Vegas, USA, 2016: 234–244.
|
[29] |
BERMAN M, TRIKI A R, and BLASCHKO M B. The Lovasz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4413–4421.
|