Advanced Search
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
LUO Jia, CHEN Qianbin, TANG Lun, ZHANG Zhicai. Resource Management Based on Deep Reinforcement Learning for UAV Communication Considering Power-Consumption Outage[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2885-2892. doi: 10.11999/JEIT220907
Citation: LUO Jia, CHEN Qianbin, TANG Lun, ZHANG Zhicai. Resource Management Based on Deep Reinforcement Learning for UAV Communication Considering Power-Consumption Outage[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2885-2892. doi: 10.11999/JEIT220907

Resource Management Based on Deep Reinforcement Learning for UAV Communication Considering Power-Consumption Outage

doi: 10.11999/JEIT220907
Funds:  The National Natural Science Foundation of China (62071078), The Chongqing Municipal Natural Science Foundation (cstc2021jcyj-bsh0175), The Sichuan Science and Technology Program (2021YFQ0053)
  • Received Date: 2022-07-05
  • Rev Recd Date: 2022-11-14
  • Available Online: 2022-11-21
  • Publish Date: 2023-08-21
  • Recent research has demonstrated that the temperature variation of smartphone caused by high data rate transmission could affect the corresponding performance on transmission. Considering the problem of performance degradation on transmission caused by the ignorance of the power-consumption outage which is related with the temperature of smartphone, a deep reinforcement learning based resource management scheme is proposed to consider the power-consumption outage for Unmanned Aerial Vehicle (UAV) communication scenario. Firstly, the analysis for the network model of UAV communication and heat transfer model in smartphone is established. Then, the influence of power-consumption outage is integrated into the optimization problem of UAV scenario in the form of constraint, and the system throughput is optimized via the joint consideration of bandwidth allocation, power allocation and trajectory design. Finally, Markov decision process is adopted to depict the problem and the optimization target is achieved by a deep reinforcement learning algorithm named normalized advantage function. Simulation results manifest that the proposed scheme can effectively enhance the system throughput and achieve appropriate trajectory of UAV.
  • loading
  • [1]
    GERACI G, GARCIA-RODRIGUE A, AZARI M M, et al. What will the future of UAV cellular communications be? A flight from 5G to 6G[J]. IEEE Communications Surveys & Tutorials, 2022, 24(3): 1304–1335. doi: 10.1109/COMST.2022.3171135
    [2]
    YANG Jing, GE Xiaohu, THOMPSON J, et al. Power-consumption outage in beyond fifth generation mobile communication systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 897–910. doi: 10.1109/TWC.2020.3029051
    [3]
    GARIMELLA S V, PERSOONS T, WEIBEL J A, et al. Electronics thermal management in information and communications technologies: Challenges and future directions[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(8): 1191–1205. doi: 10.1109/TCPMT.2016.2603600
    [4]
    CHIRIAC V, MOLLOY S, ANDERSON J, et al. A figure of merit for mobile device thermal management[C]. The 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, USA, 2016: 1393–1397.
    [5]
    BHAT G, GUMUSSOY S, and OGRAS U Y. Power and thermal analysis of commercial mobile platforms: Experiments and case studies[C]. 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy, 2019: 144–149.
    [6]
    ARNOMO S A, SIMANJUNTAK P, and NUR SADIKAN S F. Overheating analysis of mobile phone temperature based on multitasking process[C]. 2021 International Conference on Computer Science and Engineering (IC2SE), Padang, Indonesia, 2021: 1–6.
    [7]
    MAMMELA A and ANTTONEN A. Why will computing power need particular attention in future wireless devices[J]. IEEE Circuits and Systems Magazine, 2017, 17(1): 12–26. doi: 10.1109/MCAS.2016.2642679
    [8]
    YANG Jing, GE Xiaohu, and ZHONG Yi. How much of wireless rates can smartphones support in 5G networks?[J]. IEEE Network, 2019, 33(3): 122–129. doi: 10.1109/MNET.2018.1800025
    [9]
    陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789

    CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics &Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789
    [10]
    ZHAN Cheng and HUANG Renjie. Energy efficient adaptive video streaming with rotary-wing UAV[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 8040–8044. doi: 10.1109/TVT.2020.2993303
    [11]
    CHEN Yan, ZHANG Hangjing, and HU Yang. Optimal power and bandwidth allocation for multiuser video streaming in UAV relay networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6644–6655. doi: 10.1109/TVT.2020.2985061
    [12]
    FU Xiuhua, DING Tian, KADOCH M, et al. Uplink performance analysis of UAV cellular communications with power control[C]. 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 2020: 676–679.
    [13]
    LIU Xiao, LIU Yuanwei, CHEN Yue, et al. Trajectory design and power control for multi-UAV assisted wireless networks: A machine learning approach[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7957–7969. doi: 10.1109/TVT.2019.2920284
    [14]
    CHEN Mingzhe, SAAD W, and YIN Changchuan. Echo-liquid state deep learning for 360 content transmission and caching in wireless VR networks with cellular-connected UAVs[J]. IEEE Transactions on Communications, 2019, 67(9): 6386–6400. doi: 10.1109/TCOMM.2019.2917440
    [15]
    GOLDSMITH A. Wireless Communications[M]. Cambridge, USA: Cambridge University Press, 2005: 78–79.
    [16]
    ZHAO Pengtao, TIAN Hui, CHEN K C, et al. Context-aware TDD configuration and resource allocation for mobile edge computing[J]. IEEE Transactions on Communications, 2020, 68(2): 1118–1131. doi: 10.1109/tcomm.2019.2952580
    [17]
    MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
    [18]
    GU Shixiang, LILLICRAP T, SUTSKEVER I, et al. Continuous deep Q-learning with model-based acceleration[C]. The 33rd International Conference on International Conference on Machine Learning, New York, USA, 2016: 2829–2838.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (436) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return