Advanced Search
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
QIAN Yuning, CHEN Yawei, LI Gui. Target Association and Tracking Approach Based on Historical Kinematic Characteristics and SVM Spectrum Classification for Passive Sonar[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2991-3001. doi: 10.11999/JEIT220895
Citation: QIAN Yuning, CHEN Yawei, LI Gui. Target Association and Tracking Approach Based on Historical Kinematic Characteristics and SVM Spectrum Classification for Passive Sonar[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2991-3001. doi: 10.11999/JEIT220895

Target Association and Tracking Approach Based on Historical Kinematic Characteristics and SVM Spectrum Classification for Passive Sonar

doi: 10.11999/JEIT220895
  • Received Date: 2022-07-04
  • Accepted Date: 2022-12-20
  • Rev Recd Date: 2022-12-02
  • Available Online: 2022-12-23
  • Publish Date: 2023-08-21
  • In order to solve the crossing target tracking problem for passive sonar, a target association and tracking approach based on Historical kinematic characteristics and SVM (His-SVM) spectrum classification is presented, which combines the improved kinematic feature association method with the revised signal feature association method. The historical bearing changing rate is firstly extracted from historical track points to be used as a main feature for the overlapping target association and tracking. Furthermore, the SVM model, which is trained by the spectrum of track points, is utilized to classify the close trace points and each trace points can be assigned to different targets according to the classification results. Finally, the framework of the crossing target tracking algorithm is constructed by integrating historical kinematic characteristics with the SVM spectrum classification. The results of simulation studies verify the effectiveness of the proposed approach for close target association and crossing target tracking, and indicate that the tracking performance of the proposed approach is better than the traditional kinematic feature association method.
  • loading
  • [1]
    SUN Lili, CAO Yunhe, WU Wenhua, et al. A multi-target tracking algorithm based on Gaussian mixture model[J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 482–487. doi: 10.23919/JSEE.2020.000020
    [2]
    ZHANG Hongwei and XIE Weixin. Constrained unscented Kalman filtering for bearings-only maneuvering target tracking[J]. Chinese Journal of Electronics, 2020, 29(3): 501–507. doi: 10.1049/cje.2020.02.006
    [3]
    KUMAR D V A N R. Hybrid unscented Kalman filter with rare features for underwater target tracking using passive sonar measurements[J]. Optik, 2021, 226: 165813. doi: 10.1016/j.ijleo.2020.165813
    [4]
    王宇杰, 李宇, 鞠东豪, 等. 一种基于水下无人航行器的多目标被动跟踪算法[J]. 电子与信息学报, 2020, 42(8): 2013–2020. doi: 10.11999/JEIT190675

    WANG Yujie, LI Yu, JU Donghao, et al. A multi-target passive tracking algorithm based on unmanned underwater vehicle[J]. Journal of Electronics &Information Technology, 2020, 42(8): 2013–2020. doi: 10.11999/JEIT190675
    [5]
    VARGHESE S, SINCHU P, and BHAI D S. Tracking crossing targets in passive sonars using NNJPDA[J]. Procedia Computer Science, 2016, 93: 690–696. doi: 10.1016/j.procs.2016.07.266
    [6]
    郭龙祥, 虞涵钧, 生雪莉, 等. 基于协同探测数据融合的水下多目标跟踪[J]. 水下无人系统学报, 2018, 26(5): 387–394. doi: 10.11993/j.issn.2096-3920.2018.05.002

    GUO Longxiang, YU Hanjun, SHENG Xueli, et al. Underwater multi-target tracking based on collaborative detection data fusion[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 387–394. doi: 10.11993/j.issn.2096-3920.2018.05.002
    [7]
    李晓花, 李亚安, 鲁晓锋, 等. 强干扰环境下水下纯方位PMHT多目标跟踪[J]. 西北工业大学学报, 2020, 38(2): 359–365. doi: 10.3969/j.issn.1000-2758.2020.02.017

    LI Xiaohua, LI Ya’an, LU Xiaofeng, et al. Underwater bearing-only multitarget tracking in dense clutter environment based on PMHT[J]. Journal of Northwestern Polytechnical University, 2020, 38(2): 359–365. doi: 10.3969/j.issn.1000-2758.2020.02.017
    [8]
    谢志华, 蒋丞, 吴俊超, 等. 水下目标多平台协同定位和跟踪方法[J]. 声学学报, 2021, 46(6): 1028–1038. doi: 10.15949/j.cnki.0371-0025.2021.06.022

    XIE Zhihua, JIANG Cheng, WU Junchao, et al. Method of multi-platform cooperative localization and tracking for underwater targets[J]. ACTA Acustica, 2021, 46(6): 1028–1038. doi: 10.15949/j.cnki.0371-0025.2021.06.022
    [9]
    王森, 王余, 王易川, 等. 水下高速目标声谱图特征提取及分类设计[J]. 电子与信息学报, 2017, 39(11): 2684–2689. doi: 10.11999/JEIT170283

    WANG Sen, WANG Yu, WANG Yichuan, et al. Feature extraction and classification of spectrum of radiated noise of underwater high speed vehicle[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2684–2689. doi: 10.11999/JEIT170283
    [10]
    MELLEMA G R. Improved active sonar tracking in clutter using integrated feature data[J]. IEEE Journal of Oceanic Engineering, 2020, 45(1): 304–318. doi: 10.1109/JOE.2018.2870234
    [11]
    何友, 修建娟, 张晶炜, 等. 雷达数据处理及应用[M]. 北京: 电子工业出版社, 2006: 119–127.

    HE You, XIU Jianjuan, ZHANG Jingwei, et al. Radar Data Processing with Applications[M]. Beijing: Publishing House of Electronics Industry, 2006: 119–127.
    [12]
    王永良, 丁前军, 李荣锋. 自适应阵列处理[M]. 北京: 清华大学出版社, 2015: 1–8.

    WANG Yongliang, DING Qianjun, and LI Rongfeng. Adaptive Array Processing[M]. Beijing: Tsinghua University Press, 2015: 1–8.
    [13]
    卢彪. 复杂条件下时间方位历程图中目标轨迹提取与检测[D]. [硕士论文], 华中科技大学, 2017.

    LU Biao. Extraction and detection of target trajectory in bearing-time records under complex condition[D]. [Master dissertation], Huazhong University of Science and Technology, 2017.
    [14]
    QIAN Yuning, YAN Ruqiang, and HU Shijie. Bearing degradation evaluation using recurrence quantification analysis and Kalman filter[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(11): 2599–2610. doi: 10.1109/TIM.2014.2313034
    [15]
    李理, 李向欣, 殷敬伟. 基于生成对抗网络的舰船辐射噪声分类方法研究[J]. 电子与信息学报, 2022, 44(6): 1974–1983. doi: 10.11999/JEIT211077

    LI Li, LI Xiangxin, and YIN Jingwei. Research on classification algorithm of ship radiated noise data based on generative adversarial network[J]. Journal of Electronics &Information Technology, 2022, 44(6): 1974–1983. doi: 10.11999/JEIT211077
    [16]
    任超. 基于支持向量机的水下目标识别技术[D]. [硕士论文], 西北工业大学, 2016.

    REN Chao. A underwater target recognition technique based on support vector machine[D]. [Master dissertation], Northwestern Polytechnical University, 2016.
    [17]
    孟庆昕, 杨士莪, 于盛齐. 基于波形结构特征和支持向量机的水面目标识别[J]. 电子与信息学报, 2015, 37(9): 2117–2123. doi: 10.11999/JEIT150139

    MENG Qingxin, YANG Shi’e, and YU Shengqi. Recognition of marine acoustic target signals based on wave structure and support vector machine[J]. Journal of Electronics &Information Technology, 2015, 37(9): 2117–2123. doi: 10.11999/JEIT150139
    [18]
    关鑫, 李然威, 胡鹏, 等. 基于改进支持向量机的水声目标-杂波不平衡分类研究[J]. 应用声学, 2021, 40(5): 715–722. doi: 10.11684/j.issn.1000-310X.2021.05.009

    GUAN Xin, LI Ranwei, HU Peng, et al. The imbalanced classification of underwater acoustic target-clutter based on improved support vector machine[J]. Journal of Applied Acoustics, 2021, 40(5): 715–722. doi: 10.11684/j.issn.1000-310X.2021.05.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (427) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return