Citation: | CHU Zhaozhi, YANG Pengfei, WEN Xiaolong, PENG Chunrong, LIU Yutao, WU Shuang. A MEMS-based Electric Field Sensor with Self-compensation for Sensitivity Drift[J]. Journal of Electronics & Information Technology, 2023, 45(8): 3040-3046. doi: 10.11999/JEIT220882 |
[1] |
MONTANYA J, BERGAS J, and HERMOSO B. Electric field measurements at ground level as a basis for lightning hazard warning[J]. Journal of Electrostatics, 2004, 60(2/4): 241–246. doi: 10.1016/j.elstat.2004.01.009
|
[2] |
王德才. 电线电压与电流非接触检测技术研究[D]. [博士论文], 重庆大学, 2018.
WANG Decai. Study on non-contact detecting technology for electric power line-voltage and current[D]. [Ph. D. dissertation], Chongqing University, 2018.
|
[3] |
PAILLAT T, MOREAU E, and TOUCHARD G. Space charge density at the wall in the case of heptane flowing through an insulating pipe[J]. Journal of Electrostatics, 2001, 53(2): 171–182. doi: 10.1016/S0304-3886(01)00139-5
|
[4] |
李亮亮, 赵清山, 李义鹏, 等. 电导率对成品油静电特性影响试验研究[J]. 工业安全与环保, 2018, 44(7): 9–12. doi: 10.3969/j.issn.1001-425X.2018.07.003
LI Liangliang, ZHAO Qingshan, LI Yipeng, et al. Experimental study on the effect of conductivity on the electrostatic characteristics of petroleum products[J]. Industrial Safety and Environmental Protection, 2018, 44(7): 9–12. doi: 10.3969/j.issn.1001-425X.2018.07.003
|
[5] |
RIEHL P S, SCOTT K L, MULLER R S, et al. Electrostatic charge and field sensors based on micromechanical resonators[J]. Journal of Microelectromechanical Systems, 2003, 12(5): 577–589. doi: 10.1109/JMEMS.2003.818066
|
[6] |
PENG Chunrong, CHEN Xianxiang, YE Cao, et al. Design and testing of a micromechanical resonant electrostatic field sensor[J]. Journal of Micromechanics and Microengineering, 2006, 16(5): 914–919. doi: 10.1088/0960-1317/16/5/006
|
[7] |
BAHREYNI B, WIJEWEERA G, SHAFAI C, et al. Analysis and design of a micromachined electric-field sensor[J]. Journal of Microelectromechanical Systems, 2008, 17(1): 31–36. doi: 10.1109/JMEMS.2007.911870
|
[8] |
YANG Pengfei, PENG Chunrong, FANG Dongming, et al. Design, fabrication and application of an SOI-based resonant electric field microsensor with coplanar comb-shaped electrodes[J]. Journal of Micromechanics and Microengineering, 2013, 23(5): 055002. doi: 10.1088/0960-1317/23/5/055002
|
[9] |
WANG Yu, FANG Dongming, FENG Ke, et al. A novel micro electric field sensor with X–Y dual axis sensitive differential structure[J]. Sensors and Actuators A:Physical, 2015, 229: 1–7. doi: 10.1016/j.sna.2015.03.013
|
[10] |
CHU Zhaozhi, PENG Chunrong, REN Ren, et al. A high sensitivity electric field microsensor based on torsional resonance[J]. Sensors, 2018, 18(1): 286. doi: 10.3390/s18010286
|
[11] |
LING Biyun, PENG Chunrong, REN Ren, et al. Design, fabrication and characterization of a MEMS-based three-dimensional electric field sensor with low cross-axis coupling interference[J]. Sensors, 2018, 18(3): 870. doi: 10.3390/s18030870
|
[12] |
YANG Pengfei, WEN Xiaolong, CHU Zhaozhi, et al. Non-intrusive DC voltage measurement based on resonant electric field microsensors[J]. Journal of Micromechanics and Microengineering, 2021, 31(6): 064001. doi: 10.1088/1361-6439/abf631
|
[13] |
WEN Xiaolong, YANG Pengfei, CHU Zhaozhi, et al. Toward atmospheric electricity research: A low-cost, highly sensitive and robust balloon-borne electric field sounding sensor[J]. IEEE Sensors Journal, 2021, 21(12): 13405–13416. doi: 10.1109/JSEN.2021.3070130
|
[14] |
WEN Xiaolong, YANG Pengfei, ZHANG Zhouwei, et al. Resolution-enhancing structure for the electric field microsensor chip[J]. Micromachines, 2021, 12(8): 936. doi: 10.3390/mi12080936
|
[15] |
YANG Pengfei, WEN Xiaolong, LV Yao, et al. A non-intrusive voltage measurement scheme based on MEMS electric field sensors: Theoretical analysis and experimental verification of AC power lines[J]. Review of Scientific Instruments, 2021, 92(6): 065002. doi: 10.1063/5.0052678
|
[16] |
LEI Hucheng, XIA Shanhong, CHU Zhaozhi, et al. An electric field microsensor with mutual shielding electrodes[J]. Micromachines, 2021, 12(4): 360. doi: 10.3390/mi12040360
|
[17] |
YANG Pengfei, WEN Xiaolong, LV Yao, et al. Improved Microsensor-based fieldmeter for ground-level atmospheric electric field measurements[C]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2001510.
|
[18] |
LIU Jun, XIA Shanhong, PENG Chunrong, et al. Wafer-level vacuum-packaged electric field microsensor: Structure design, theoretical model, microfabrication, and characterization[J]. Micromachines, 2022, 13(6): 928. doi: 10.3390/mi13060928
|
[19] |
杨鹏飞, 陈博, 闻小龙, 等. 一种基于MEMS芯片的新型地面大气电场传感器[J]. 电子与信息学报, 2016, 38(6): 1536–1540. doi: 10.11999/JEIT150994
YANG Pengfei, CHEN Bo, WEN Xiaolong, et al. A novel MEMS chip-based ground atmospheric electric field sensor[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1536–1540. doi: 10.11999/JEIT150994
|
[20] |
闻小龙, 杨鹏飞, 储昭志, 等. 基于MEMS的距离自适应型非接触静电仪[J]. 电子与信息学报, 2021, 43(10): 3068–3074. doi: 10.11999/JEIT200571
WEN Xiaolong, YANG Pengfei, CHU Zhaozhi, et al. A daptive-distance noncontact electrostatic meter based on MEMS technology[J]. Journal of Electronics &Information Technology, 2021, 43(10): 3068–3074. doi: 10.11999/JEIT200571
|