Advanced Search
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
PU Xumin, LIU Yanxiang, SUN Zhinan, LI Jingjie, CHEN Qianbin, JIN Shi. A Low Complexity Millimeter Wave Channel Tracking Algorithm in Reconfigurable Intelligent Surface[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2911-2918. doi: 10.11999/JEIT220875
Citation: PU Xumin, LIU Yanxiang, SUN Zhinan, LI Jingjie, CHEN Qianbin, JIN Shi. A Low Complexity Millimeter Wave Channel Tracking Algorithm in Reconfigurable Intelligent Surface[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2911-2918. doi: 10.11999/JEIT220875

A Low Complexity Millimeter Wave Channel Tracking Algorithm in Reconfigurable Intelligent Surface

doi: 10.11999/JEIT220875
Funds:  The National Natural Science Foundation of China (61701062), China Postdoctoral Science Foundation (2019M651649), Jiangsu Planned Projects for Postdoctoral Research Funds (2018K041c), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202100649, KJQN202000612)
  • Received Date: 2022-06-30
  • Rev Recd Date: 2022-10-28
  • Available Online: 2022-11-05
  • Publish Date: 2023-08-21
  • In this paper, a low complexity channel tracking scheme based on Newton algorithm is proposed for the millimeter wave communication system assisted by Reconfigurable Intelligent Surfaces (RIS). The proposed tracking algorithm is used to track the slow variation of the angle between the user and the RIS. In the proposed scheme, some elements of RIS are connected to the Radio Frequency (RF) chains. The two-Dimensional Fast Fourier Transform (2D-FFT) algorithm is used to initialize the angle estimation, and then the Newton algorithm is used to track the angle parameters in each time slot. The channel gain of each slot is estimated by maximum likelihood algorithm. The channel abrupt changes is caused by sudden environmental change and slow change of user terminal. If the abrupt change is detected, the angle parameters are initialized again, otherwise the Newton algorithm is still used to track the angle parameters. Simulation results show that the proposed channel tracking scheme not only achieves the lowest complexity but also ensures excellent performance, which achieves a great tradeoff between computational complexity and channel estimation performance.
  • loading
  • [1]
    HAN Huimei, ZHAO Jun, ZHAI Wenchao, et al. Reconfigurable intelligent surface aided power control for physical-layer broadcasting[J]. IEEE Transactions on Communications, 2021, 69(11): 7821–7836. doi: 10.1109/TCOMM.2021.3104871
    [2]
    WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [3]
    ZHENG Beixiong and ZHANG Rui. Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization[J]. IEEE Wireless Communications Letters, 2020, 9(4): 518–522. doi: 10.1109/LWC.2019.2961357
    [4]
    PANG Xiaowei, SHENG Min, ZHAO Nan, et al. When UAV meets IRS: Expanding air-ground networks via passive reflection[J]. IEEE Wireless Communications, 2021, 28(5): 164–170. doi: 10.1109/MWC.010.2000528
    [5]
    YANG Liang, YANG Jinxia, XIE Wenwu, et al. Secrecy performance analysis of RIS-aided wireless communication systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12296–12300. doi: 10.1109/TVT.2020.3007521
    [6]
    HUR S, KIM T, LOVE D J, et al. Millimeter wave beamforming for wireless backhaul and access in small cell networks[J]. IEEE Transactions on Communications, 2013, 61(10): 4391–4403. doi: 10.1109/TCOMM.2013.090513.120848
    [7]
    JENSEN T L and DE CARVALHO E. An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 5000–5004.
    [8]
    李素月, 郝红婷, 王安红. IRS辅助的多天线系统下行链路低复杂度信道估计[J]. 电讯技术, 2022, 62(4): 466–472. doi: 10.3969/j.issn.1001-893x.2022.04.009

    LI Suyue, HAO Hongting, and WANG Anhong. Low-complexity channel estimation for IRS-aided multi-antenna downlink systems[J]. Telecommunication Engineering, 2022, 62(4): 466–472. doi: 10.3969/j.issn.1001-893x.2022.04.009
    [9]
    HE Zhenqing and YUAN Xiaojun. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[J]. IEEE Wireless Communications Letters, 2020, 9(2): 210–214. doi: 10.1109/LWC.2019.2948632
    [10]
    MAO Zhendong, PENG Mugen, and LIU Xiqing. Channel estimation for reconfigurable intelligent surface assisted wireless communication systems in mobility scenarios[J]. China Communications, 2021, 18(3): 29–38. doi: 10.23919/JCC.2021.03.003
    [11]
    CAI Penghao, ZONG Jun, LUO Xiliang, et al. Downlink channel tracking for intelligent reflecting surface-aided FDD MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3341–3353. doi: 10.1109/TVT.2021.3063138
    [12]
    HE Jiguang, NGUYEN N T, SCHROEDER R, et al. Channel estimation and hybrid architectures for RIS-assisted communications[C]. 2021 Joint European Conference on Networks and Communications & 6G Summit, Porto, Portugal, 2021: 60–65.
    [13]
    HE Jiguang, WYMEERSCH H, and JUNTTI M. Channel estimation for RIS-aided mmWave MIMO systems via atomic norm minimization[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5786–5797. doi: 10.1109/TWC.2021.3070064
    [14]
    ALEXANDROPOULOS G C and VLACHOS E. A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 9175–9179.
    [15]
    TAHA A, ALRABEIAH M, and ALKHATEEB A. Enabling large intelligent surfaces with compressive sensing and deep learning[J]. IEEE Access, 2021, 9(1): 44304–44321. doi: 10.1109/ACCESS.2021.3064073
    [16]
    CHEN Xiao, SHI Jianfeng, YANG Zhaohui, et al. Low-complexity channel estimation for intelligent reflecting surface-enhanced massive MIMO[J]. IEEE Wireless Communications Letters, 2021, 10(5): 996–1000. doi: 10.1109/LWC.2021.3054004
    [17]
    FAN Dian, GAO Feifei, WANG Gongpu, et al. Angle domain signal processing-aided channel estimation for indoor 60-GHz TDD/FDD massive MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(9): 1948–1961. doi: 10.1109/JSAC.2017.2720938
    [18]
    ZHANG Chuang, GUO Dongning, and FAN Pingyi. Tracking angles of departure and arrival in a mobile millimeter wave channel[C]. 2016 IEEE International Conference on Communications, Kuala Lumpur, Malaysia, 2016: 1–6.
    [19]
    ABATZOGLOU T J. A fast maximum likelihood algorithm for frequency estimation of a sinusoid based on newton's method[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(1): 77–89. doi: 10.1109/TASSP.1985.1164541
    [20]
    MAMANDIPOOR B, RAMASAMY D, and MADHOW U. Newtonized orthogonal matching pursuit: Frequency estimation over the continuum[J]. IEEE Transactions on Signal Processing, 2016, 64(19): 5066–5081. doi: 10.1109/TSP.2016.2580523
    [21]
    KAY S M. Fundamentals of Statistical Signal Processing[M]. Englewood Cliffs: Prentice Hall Press, 1993: 425–506.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (473) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return