Advanced Search
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
XIE Wen, WANG Ruonan, YANG Xin, LI Yongheng. Research on Multi-scale Residual UNet Fused with Depthwise Separable Convolution in PolSAR Terrain Classification[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2975-2985. doi: 10.11999/JEIT220867
Citation: XIE Wen, WANG Ruonan, YANG Xin, LI Yongheng. Research on Multi-scale Residual UNet Fused with Depthwise Separable Convolution in PolSAR Terrain Classification[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2975-2985. doi: 10.11999/JEIT220867

Research on Multi-scale Residual UNet Fused with Depthwise Separable Convolution in PolSAR Terrain Classification

doi: 10.11999/JEIT220867
Funds:  The National Natural Science Foundation of China (61901365, 62071379), The Natural Science Foundation of Shaanxi Province (2019JQ-377), Shaanxi Provincial Department of Education Special Scientific Research Program (19JK0805), The New Star Team of Xi'an University of Posts and Telecommunications (xyt2016-01)
  • Received Date: 2022-06-29
  • Rev Recd Date: 2023-03-30
  • Available Online: 2023-04-04
  • Publish Date: 2023-08-21
  • As one of the important research contents of Synthetic Aperture Radar(SAR) image interpretation, Polarimetric Synthetic Aperture Radar(PolSAR) terrain classification has attracted more and more attention from scholars at home and abroad. Different from natural images, the PolSAR dataset not only has unique data attributes but also belongs to a small sample dataset. Therefore, how to make full use of the data characteristics and label samples is a key consideration. Based on the above problems, a new network on the basis of UNet for PolSAR terrain classification—Multiscale Separable Residual Unet(MSR-Unet) is proposed in this paper. In order to extract separately the spatial and channel features of the input data while reducing the redundancy of features, the ordinary 2D convolution is replaced by the depthwise separable convolution in MSR-Unet. Then, an improved multi-scale residual structure based on the residual structure is proposed. This structure obtains features of different scales by setting convolution kernels of different sizes, and at the same time the feature is reused by ​​dense connection, using the structure can not only increase the depth of the network to a certain extent and obtain better features, but also enable the network to make full use of label samples and enhance the transmission efficiency of features information, thereby improving the classification accuracy of PolSAR terrain. The experimental results on three standard datasets show that compared with the traditional classification methods and other mainstream deep learning network models such as UNet, the MSR-Unet can improve average accuracy, overall accuracy and Kappa coefficient in different degrees and has better robustness.
  • loading
  • [1]
    HUANG Zhongling, DATCU M, PAN Zongxu, et al. Deep SAR-Net: Learning objects from signals[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161: 179–193. doi: 10.1016/j.isprsjprs.2020.01.016
    [2]
    JAFARI M, MAGHSOUDI Y, and VALADAN ZOEJ M J. A new method for land cover characterization and classification of polarimetric SAR data using polarimetric signatures[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3595–3607. doi: 10.1109/JSTARS.2014.2387374
    [3]
    FUKUDA S and HIROSAWA H. Support vector machine classification of land cover: Application to polarimetric SAR data[C]. Proceedings of IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, 2001: 187–189.
    [4]
    OKWUASHI O, NDEHEDEHE C E, OLAYINKA D N, et al. Deep support vector machine for PolSAR image classification[J]. International Journal of Remote Sensing, 2021, 42(17): 6498–6536. doi: 10.1080/01431161.2021.1939910
    [5]
    LEE J S, GRUNES M R, AINSWORTH T L, et al. Quantitative comparison of classification capability: Fully-polarimetric versus partially polarimetric SAR[C]. Proceedings of IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Honolulu, USA, 2000: 1101–1103.
    [6]
    魏志强, 毕海霞. 基于聚类识别的极化SAR图像分类[J]. 电子与信息学报, 2018, 40(12): 2795–2803. doi: 10.11999/JEIT180229

    WEI Zhiqiang and BI Haixia. PolSAR image classification based on discriminative clustering[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2795–2803. doi: 10.11999/JEIT180229
    [7]
    CHEN Yanqiao, JIAO Licheng, LI Yangyang, et al. Multilayer projective dictionary pair learning and sparse autoencoder for PolSAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 6683–6694. doi: 10.1109/TGRS.2017.2727067
    [8]
    XIE Wen, MA Gaini, HUA Wenqiang, et al. Complex-valued wishart stacked auto-encoder network for Polsar image classification[C]. Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 3193–3196.
    [9]
    AI Jiaqiu, WANG Feifan, MAO Yuxiang, et al. A fine PolSAR terrain classification algorithm using the texture feature fusion-based improved convolutional autoencoder[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5218714. doi: 10.1109/TGRS.2021.3131986
    [10]
    CHEN Siwei and TAO Chensong. PolSAR image classification using polarimetric-feature-driven deep convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 627–631. doi: 10.1109/LGRS.2018.2799877
    [11]
    HUA Wenqiang, ZHANG Cong, XIE Wen, et al. Polarimetric SAR image classification based on ensemble dual-branch CNN and superpixel algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 2759–2772. doi: 10.1109/JSTARS.2022.3162953
    [12]
    CUI Yuanhao, LIU Fang, JIAO Licheng, et al. Polarimetric multipath convolutional neural network for PolSAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5207118. doi: 10.1109/TGRS.2021.3071559
    [13]
    秦先祥, 余旺盛, 王鹏, 等. 基于复值卷积神经网络样本精选的极化SAR图像弱监督分类方法[J]. 雷达学报, 2020, 9(3): 525–538. doi: 10.12000/JR20062

    QIN Xianxiang, YU Wangsheng, WANG Peng, et al. Weakly supervised classification of PolSAR images based on sample refinement with complex-valued convolutional neural network[J]. Journal of Radars, 2020, 9(3): 525–538. doi: 10.12000/JR20062
    [14]
    LIU Fang, JIAO Licheng, and TANG Xu. Task-oriented GAN for PolSAR image classification and clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9): 2707–2719. doi: 10.1109/TNNLS.2018.2885799
    [15]
    LI Xiufang, SUN Qigong, LI Lingling, et al. SSCV-GANs: Semi-supervised complex-valued GANs for PolSAR image classification[J]. IEEE Access, 2020, 8: 146560–146576. doi: 10.1109/ACCESS.2020.3004591
    [16]
    YANG Chen, HOU Biao, CHANUSSOT J, et al. N-Cluster loss and hard sample generative deep metric learning for PolSAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210516. doi: 10.1109/TGRS.2021.3099840
    [17]
    贺丰收, 何友, 刘准钆, 等. 卷积神经网络在雷达自动目标识别中的研究进展[J]. 电子与信息学报, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899

    HE Fengshou, HE You, LIU Zhunga, et al. Research and development on applications of convolutional neural networks of radar automatic target recognition[J]. Journal of Electronics &Information Technology, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899
    [18]
    LI Yangyang, CHEN Yanqiao, LIU Guangyuan, et al. A novel deep fully convolutional network for PolSAR image classification[J]. Remote Sensing, 2018, 10(12): 1984. doi: 10.3390/rs10121984
    [19]
    RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
    [20]
    KOTRU R, SHAIKH M, TURKAR V, et al. Semantic segmentation of PolSAR images for various land cover features[C]. Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 351–354.
    [21]
    HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv: 1704.04861, 2017.
    [22]
    CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1800–1807.
    [23]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [24]
    HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269.
    [25]
    AI Jiaqiu, MAO Yuxiang, LUO Qiwu, et al. SAR target classification using the multikernel-size feature fusion-based convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5214313. doi: 10.1109/TGRS.2021.3106915
    [26]
    SHANG Ronghua, HE Jianghai, WANG Jiaming, et al. Dense connection and depthwise separable convolution based CNN for polarimetric SAR image classification[J]. Knowledge-Based Systems, 2020, 194: 105542. doi: 10.1016/j.knosys.2020.105542
    [27]
    孙军梅, 葛青青, 李秀梅, 等. 一种具有边缘增强特点的医学图像分割网络[J]. 电子与信息学报, 2022, 44(5): 1643–1652. doi: 10.11999/JEIT210784

    SUN Junmei, GE Qingqing, LI Xiumei, et al. A medical image segmentation network with boundary enhancement[J]. Journal of Electronics &Information Technology, 2022, 44(5): 1643–1652. doi: 10.11999/JEIT210784
    [28]
    WU Wenjin, LI Hailei, LI Xinwu, et al. PolSAR image semantic segmentation based on deep transfer learning—realizing smooth classification with small training sets[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(6): 977–981. doi: 10.1109/LGRS.2018.2886559
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (653) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return