Advanced Search
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
GUO Qiang, NIE Mengyun, QI Liangang, Kaliuzhnyi Mykola. Automatic Modulation Recognition Based on Single-channel Multi-scale Graph Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1575-1584. doi: 10.11999/JEIT220840
Citation: GUO Qiang, NIE Mengyun, QI Liangang, Kaliuzhnyi Mykola. Automatic Modulation Recognition Based on Single-channel Multi-scale Graph Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1575-1584. doi: 10.11999/JEIT220840

Automatic Modulation Recognition Based on Single-channel Multi-scale Graph Neural Network

doi: 10.11999/JEIT220840
Funds:  The National Key R & D Plan(2018YFE0206500), The National Natural Science Foundation of China (62071140), The Fundamental Research Funds for Central Universities (3072022QBZ0801)
  • Received Date: 2022-06-24
  • Rev Recd Date: 2022-11-08
  • Available Online: 2022-11-10
  • Publish Date: 2023-05-10
  • Considering the shortcomings of the Adaptive Visibility Graph (AVG) algorithm being too complex and the accuracy improvement is not significant, an Automatic Modulation Recognition(AMR) framework based on Single-channel Multi-scale Graph Neural Network (SMGNN) is proposed and interpretability studies are conducted on the various parts of the framework. Firstly, the multi-layer perceptron and one-dimensional convolutional adaptive are used to realize the mapping between single-channel signal sequences and graphs, which reduces effectively the complexity of AVG algorithms. Secondly, a multi-scale graph neural network is designed to fuse the features of different resolutions, which improves the accuracy of model recognition. Experiments show that the SMGNN algorithm proposed in this paper saves nearly half of the parameter amount compared with the AVG algorithm, and the recognition accuracy has been greatly improved.
  • loading
  • [1]
    LIANG Yingchang, TAN Junjie, and NIYATO D. Overview on intelligent wireless communication technology[J]. Journal on Communications, 2020, 41(7): 1–17. doi: 10.11959/j.issn.1000-436x.2020145
    [2]
    XU J L, SU Wei, and ZHOU Mengchu. Likelihood-Ratio approaches to automatic modulation classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2011, 41(4): 455–469. doi: 10.1109/TSMCC.2010.2076347
    [3]
    XU J L, SU Wei, and ZHOU Mengchu. Software-Defined radio equipped with rapid modulation recognition[J]. IEEE Transactions on Vehicular Technology, 2010, 59(4): 1659–1667. doi: 10.1109/TVT.2010.2041805
    [4]
    O’SHEA T J, CORGAN J, and CLANCY T C. Convolutional radio modulation recognition networks[C]. 17th International Conference on Engineering Applications of Neural Networks, Aberdeen, UK, 2016: 213–226.
    [5]
    WEST N E and O'SHEA T. Deep architectures for modulation recognition[C]. 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Baltimore, USA, 2017: 1–6.
    [6]
    郭业才, 姚文强. 基于信噪比分类网络的调制信号分类识别算法[J]. 电子与信息学报, 2022, 44(10): 3507–3515. doi: 10.11999/JEIT210825

    GUO Yecai and YAO Wenqiang. Modulation signal classification and recognition algorithm based on signal to noise ratio classification network[J]. Journal of Electronics &Information Technology, 2022, 44(10): 3507–3515. doi: 10.11999/JEIT210825
    [7]
    颜康, 金炜东, 黄颖坤, 等. 基于元学习的畸变雷达电磁信号识别[J]. 电子与信息学报, 2022, 44(4): 1351–1357. doi: 10.11999/JEIT210190

    YAN Kang, JIN Weidong, HUANG Yingkun, et al. Distorted radar electromagnetic signal recognition based on meta-learning[J]. Journal of Electronics &Information Technology, 2022, 44(4): 1351–1357. doi: 10.11999/JEIT210190
    [8]
    XUE Fuzhao, SUN Aixin, ZHANG Hao, et al. GDPNet: Refining latent multi-view graph for relation extraction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(16): 14194–14202. doi: 10.1609/aaai.v35i16.17670
    [9]
    NAN Guoshun, LUO Guoqing, LENG Sicong, et al. Speaker-oriented latent structures for dialogue-based relation extraction[J]. arXiv preprint arXiv: 2109.05182, 2021.
    [10]
    LACASA L, LUQUE B, BALLESTEROS F, et al. From time series to complex networks: The visibility graph[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4972–4975. doi: 10.1073/pnas.0709247105
    [11]
    LUQUE B, LACASA L, BALLESTEROS F, et al. Horizontal visibility graphs: Exact results for random time series[J]. Physical Review E, 2009, 80(4 Pt 2): 046103.
    [12]
    QI Xuan, ZHOU Jinchao, QIU Kunfeng, et al. CLPVG: Circular limited penetrable visibility graph as a new network model for time series[J]. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2022, 32(1): 013130. doi: 10.1063/5.0048243
    [13]
    WAN Tao, JIANG Kaili, TANG Yanli, et al. Automatic LPI radar signal sensing method using visibility graphs[J]. IEEE Access, 2020, 8: 159650–159660. doi: 10.1109/ACCESS.2020.3020336
    [14]
    LIU Yabo, LIU Yi, and YANG Cheng. Modulation recognition with graph convolutional network[J]. IEEE Wireless Communications Letters, 2020, 9(5): 624–627. doi: 10.1109/LWC.2019.2963828
    [15]
    QI Xuan, ZHOU Jinchao, QIU Kunfeng, et al. AvgNet: Adaptive visibility graph neural network and its application in modulation classification[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(3): 1516–1526. doi: 10.1109/TNSE.2022.3146836
    [16]
    YING R, YOU Jiaxuan, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling[C]. Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 4805–4815.
    [17]
    VAN DER MAATEN L and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(2605): 2579–2605.
    [18]
    樊昌信, 曹丽娜. 通信原理[M]. 7版. 北京: 国防工业出版社, 2012: 176–225.

    FAN Changxin and CAO Lina. Principles of Communication[M]. 7th ed. Beijing: National Defense Industry Press, 2012: 176–225.
    [19]
    LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. The 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
    [20]
    O’SHEA T J, ROY T, and CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168–179. doi: 10.1109/JSTSP.2018.2797022
    [21]
    RAJENDRAN S, MEERT W, GIUSTINIANO D, et al. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3): 433–445. doi: 10.1109/TCCN.2018.2835460
    [22]
    XU Jialang, LUO Chunbo, PARR G, et al. A spatiotemporal multi-channel learning framework for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1629–1632. doi: 10.1109/LWC.2020.2999453
    [23]
    BASTIAN M, HEYMANN S, and JACOMY M. Gephi: An open source software for exploring and manipulating networks[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2009, 3(1): 361–362. doi: 10.1609/icwsm.v3i1.13937
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (870) PDF downloads(203) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return