Citation: | GUO Qiang, NIE Mengyun, QI Liangang, Kaliuzhnyi Mykola. Automatic Modulation Recognition Based on Single-channel Multi-scale Graph Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1575-1584. doi: 10.11999/JEIT220840 |
[1] |
LIANG Yingchang, TAN Junjie, and NIYATO D. Overview on intelligent wireless communication technology[J]. Journal on Communications, 2020, 41(7): 1–17. doi: 10.11959/j.issn.1000-436x.2020145
|
[2] |
XU J L, SU Wei, and ZHOU Mengchu. Likelihood-Ratio approaches to automatic modulation classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2011, 41(4): 455–469. doi: 10.1109/TSMCC.2010.2076347
|
[3] |
XU J L, SU Wei, and ZHOU Mengchu. Software-Defined radio equipped with rapid modulation recognition[J]. IEEE Transactions on Vehicular Technology, 2010, 59(4): 1659–1667. doi: 10.1109/TVT.2010.2041805
|
[4] |
O’SHEA T J, CORGAN J, and CLANCY T C. Convolutional radio modulation recognition networks[C]. 17th International Conference on Engineering Applications of Neural Networks, Aberdeen, UK, 2016: 213–226.
|
[5] |
WEST N E and O'SHEA T. Deep architectures for modulation recognition[C]. 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Baltimore, USA, 2017: 1–6.
|
[6] |
郭业才, 姚文强. 基于信噪比分类网络的调制信号分类识别算法[J]. 电子与信息学报, 2022, 44(10): 3507–3515. doi: 10.11999/JEIT210825
GUO Yecai and YAO Wenqiang. Modulation signal classification and recognition algorithm based on signal to noise ratio classification network[J]. Journal of Electronics &Information Technology, 2022, 44(10): 3507–3515. doi: 10.11999/JEIT210825
|
[7] |
颜康, 金炜东, 黄颖坤, 等. 基于元学习的畸变雷达电磁信号识别[J]. 电子与信息学报, 2022, 44(4): 1351–1357. doi: 10.11999/JEIT210190
YAN Kang, JIN Weidong, HUANG Yingkun, et al. Distorted radar electromagnetic signal recognition based on meta-learning[J]. Journal of Electronics &Information Technology, 2022, 44(4): 1351–1357. doi: 10.11999/JEIT210190
|
[8] |
XUE Fuzhao, SUN Aixin, ZHANG Hao, et al. GDPNet: Refining latent multi-view graph for relation extraction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(16): 14194–14202. doi: 10.1609/aaai.v35i16.17670
|
[9] |
NAN Guoshun, LUO Guoqing, LENG Sicong, et al. Speaker-oriented latent structures for dialogue-based relation extraction[J]. arXiv preprint arXiv: 2109.05182, 2021.
|
[10] |
LACASA L, LUQUE B, BALLESTEROS F, et al. From time series to complex networks: The visibility graph[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4972–4975. doi: 10.1073/pnas.0709247105
|
[11] |
LUQUE B, LACASA L, BALLESTEROS F, et al. Horizontal visibility graphs: Exact results for random time series[J]. Physical Review E, 2009, 80(4 Pt 2): 046103.
|
[12] |
QI Xuan, ZHOU Jinchao, QIU Kunfeng, et al. CLPVG: Circular limited penetrable visibility graph as a new network model for time series[J]. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2022, 32(1): 013130. doi: 10.1063/5.0048243
|
[13] |
WAN Tao, JIANG Kaili, TANG Yanli, et al. Automatic LPI radar signal sensing method using visibility graphs[J]. IEEE Access, 2020, 8: 159650–159660. doi: 10.1109/ACCESS.2020.3020336
|
[14] |
LIU Yabo, LIU Yi, and YANG Cheng. Modulation recognition with graph convolutional network[J]. IEEE Wireless Communications Letters, 2020, 9(5): 624–627. doi: 10.1109/LWC.2019.2963828
|
[15] |
QI Xuan, ZHOU Jinchao, QIU Kunfeng, et al. AvgNet: Adaptive visibility graph neural network and its application in modulation classification[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(3): 1516–1526. doi: 10.1109/TNSE.2022.3146836
|
[16] |
YING R, YOU Jiaxuan, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling[C]. Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 4805–4815.
|
[17] |
VAN DER MAATEN L and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(2605): 2579–2605.
|
[18] |
樊昌信, 曹丽娜. 通信原理[M]. 7版. 北京: 国防工业出版社, 2012: 176–225.
FAN Changxin and CAO Lina. Principles of Communication[M]. 7th ed. Beijing: National Defense Industry Press, 2012: 176–225.
|
[19] |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. The 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
|
[20] |
O’SHEA T J, ROY T, and CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168–179. doi: 10.1109/JSTSP.2018.2797022
|
[21] |
RAJENDRAN S, MEERT W, GIUSTINIANO D, et al. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3): 433–445. doi: 10.1109/TCCN.2018.2835460
|
[22] |
XU Jialang, LUO Chunbo, PARR G, et al. A spatiotemporal multi-channel learning framework for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1629–1632. doi: 10.1109/LWC.2020.2999453
|
[23] |
BASTIAN M, HEYMANN S, and JACOMY M. Gephi: An open source software for exploring and manipulating networks[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2009, 3(1): 361–362. doi: 10.1609/icwsm.v3i1.13937
|