Citation: | YANG Shen, TIAN Lifan, LIANG Jiaming, HUANG Zefeng. Infrared and Visible Image Fusion Based on Improved Dual Path Generation Adversarial Network[J]. Journal of Electronics & Information Technology, 2023, 45(8): 3012-3021. doi: 10.11999/JEIT220819 |
[1] |
GOSHTASBY A A and NIKOLOV S. Image fusion: Advances in the state of the art[J]. Information Fusion, 2007, 8(2): 114–118. doi: 10.1016/j.inffus.2006.04.001
|
[2] |
TOET A, HOGERVORST M A, NIKOLOV S G, et al. Towards cognitive image fusion[J]. Information Fusion, 2010, 11(2): 95–113. doi: 10.1016/j.inffus.2009.06.008
|
[3] |
朱浩然, 刘云清, 张文颖. 基于对比度增强与多尺度边缘保持分解的红外与可见光图像融合[J]. 电子与信息学报, 2018, 40(6): 1294–1300. doi: 10.11999/JEIT170956
ZHU Haoran, LIU Yunqing, and ZHANG Wenying. Infrared and visible image fusion based on contrast enhancement and multi-scale edge-preserving decomposition[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1294–1300. doi: 10.11999/JEIT170956
|
[4] |
GAO Yuan, MA Jiayi, and YUILLE A L. Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples[J]. IEEE Transactions on Image Processing, 2017, 26(5): 2545–2560. doi: 10.1109/TIP.2017.2675341
|
[5] |
LIU C H, QI Y, and DING W R. Infrared and visible image fusion method based on saliency detection in sparse domain[J]. Infrared Physics & Technology, 2017, 83: 94–102. doi: 10.1016/j.infrared.2017.04.018
|
[6] |
HE Changtao, LIU Quanxi, LI Hongliang, et al. Multimodal medical image fusion based on IHS and PCA[J]. Procedia Engineering, 2010, 7: 280–285. doi: 10.1016/j.proeng.2010.11.045
|
[7] |
张介嵩, 黄影平, 张瑞. 基于CNN的点云图像融合目标检测[J]. 光电工程, 2021, 48(5): 200418. doi: 10.12086/oee.2021.200418
ZHANG Jiesong, HUANG Yingping, and ZHANG Rui. Fusing point cloud with image for object detection using convolutional neural networks[J]. Opto-electronic Engineering, 2021, 48(5): 200418. doi: 10.12086/oee.2021.200418
|
[8] |
陈永, 张娇娇, 王镇. 多尺度密集连接注意力的红外与可见光图像融合[J]. 光学 精密工程, 2022, 30(18): 2253–2266. doi: 10.37188/OPE.20223018.2253
CHEN Yong, ZHANG Jiaojiao, and WANG Zhen. Infrared and visible image fusion based on multi-scale dense attention connection network[J]. Optics and Precision Engineering, 2022, 30(18): 2253–2266. doi: 10.37188/OPE.20223018.2253
|
[9] |
AN Wenbo and WANG Hongmei. Infrared and visible image fusion with supervised convolutional neural network[J]. Optik, 2020, 219: 165120. doi: 10.1016/j.ijleo.2020.165120
|
[10] |
LI Jing, HUO Hongtao, LIU Kejian, et al. Infrared and visible image fusion using dual discriminators generative adversarial networks with Wasserstein distance[J]. Information Sciences, 2020, 529: 28–41. doi: 10.1016/j.ins.2020.04.035
|
[11] |
MA Jiayi, YU Wei, LIANG Pengwei, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11–26. doi: 10.1016/j.inffus.2018.09.004
|
[12] |
MA Jiayi, ZHANG Hao, SHAO Zhenfeng, et al. GANMcC: A generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5005014. doi: 10.1109/TIM.2020.3038013
|
[13] |
QU Guihong, ZHANG Dali, and YAN Pingfan. Information measure for performance of image fusion[J]. Electronics Letters, 2002, 38(7): 313–315. doi: 10.1049/el:20020212
|
[14] |
XYDEAS C S and PETROVIĆ V. Objective image fusion performance measure[J]. Electronics Letters, 2000, 36(4): 308–309. doi: 10.1049/el:20000267
|
[15] |
CUI Guangmang, FENG Huajun, XU Zhihai, et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Optics Communications, 2015, 341: 199–209. doi: 10.1016/j.optcom.2014.12.032
|
[16] |
ESKICIOGLU A M and FISHER P S. Image quality measures and their performance[J]. IEEE Transactions on Communications, 1995, 43(12): 2959–2965. doi: 10.1109/26.477498
|
[17] |
LI H, MANJUNATH B S, and MITRA S K. Multisensor image fusion using the wavelet transform[J]. Graphical Models and Image Processing, 1995, 57(3): 235–245. doi: 10.1006/gmip.1995.1022
|
[18] |
FU Yu and WU Xiaojun. A dual-branch network for infrared and visible image fusion[C]. 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 2021: 10675–10680.
|
[19] |
ZHAO Zixiang, XU Shuang, ZHANG Chunxia, et al. DIDFuse: Deep image decomposition for infrared and visible image fusion[C]. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 2020: 970–976.
|
[20] |
LIU Jinyuan, FAN Xin, JIANG Ji, et al. Learning a deep multi-scale feature ensemble and an edge-attention guidance for image fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(1): 105–119. doi: 10.1109/TCSVT.2021.3056725
|
[21] |
LI Hui, WU Xiaojun, and KITTLER J. RFN-Nest: An end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73: 72–86. doi: 10.1016/j.inffus.2021.02.023
|
[22] |
ROBERTS J W, AARDT J A V, and AHMED F B. Assessment of image fusion procedures using entropy, image quality, and multispectral classification[J]. Journal of Applied Remote Sensing, 2008, 2(1): 023522. doi: 10.1117/1.2945910
|
[23] |
RAO Yunjiang. In-fibre Bragg grating sensors[J]. Measurement Science and Technology, 1997, 8(4): 355–375. doi: 10.1088/0957-0233/8/4/002
|
[24] |
HAN Yu, CAI Yunze, CAO Yin, et al. A new image fusion performance metric based on visual information fidelity[J]. Information Fusion, 2013, 14(2): 127–135. doi: 10.1016/j.inffus.2011.08.002
|
[25] |
ZHANG Xingchen, YE Ping, and XIAO Gang. VIFB: A visible and infrared image fusion benchmark[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA, 2020: 468–478.
|