Advanced Search
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
YANG Xinghua, YANG Ziyi, SU Haijin, JIANG Weihuang, ZHANG Jing, WEI Qi, LUO Li, WANG Zhongjing, LÜ Huafang, QIAO Fei. Review of the Fused Technology of Sensing, Storage and Computing Based on SRAM[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2828-2838. doi: 10.11999/JEIT220815
Citation: YANG Xinghua, YANG Ziyi, SU Haijin, JIANG Weihuang, ZHANG Jing, WEI Qi, LUO Li, WANG Zhongjing, LÜ Huafang, QIAO Fei. Review of the Fused Technology of Sensing, Storage and Computing Based on SRAM[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2828-2838. doi: 10.11999/JEIT220815

Review of the Fused Technology of Sensing, Storage and Computing Based on SRAM

doi: 10.11999/JEIT220815
Funds:  The National Natural Science Foundation of China (92164203),The Tsinghua University-Ningxia Yinchuan Water Network Digital Water Control Joint Research Institute Fund Project (SKL-IOW-2020TC2003)
  • Received Date: 2022-06-21
  • Accepted Date: 2022-12-20
  • Rev Recd Date: 2022-12-10
  • Available Online: 2022-12-23
  • Publish Date: 2023-08-21
  • The integrated chip architecture based on SRAM memory combines sensing, storage and computing functions, solving the problem of “storage wall” faced by the Von Neumann architecture by enabling the memory unit to have computing power and avoiding the transfer of data during the calculation process. This structure is combined with the sensor part to achieve ultra-high-speed, ultra-low-power computing power. SRAM memory has great advantages in terms of speed compared to other memory, mainly reflected in the fact that the architecture can achieve a high energy efficiency ratio, which can ensure high accuracy after the accuracy is enhanced, and is suitable for large computing power scenario design under the requirements of low power consumption and high performance. This paper introduces the structure of the sensor-memory-computing chip based on SRAM memory, investigates the research and development of SRAM-based sensor-memory-computing integration in the voltage domain, charge domain and digital domain, and discusses the future development direction of this field.
  • loading
  • [1]
    HAENSCH W, GOKMEN T, and PURI R. The next generation of deep learning hardware: Analog computing[J]. Proceedings of the IEEE, 2019, 107(1): 108–122. doi: 10.1109/JPROC.2018.2871057
    [2]
    MA Yufei, DU Yuan, DU Li, et al. In-memory computing: The next-generation AI computing paradigm[C]. 2020 on Great Lakes Symposium on VLSI, New York, USA, 2020: 265–270.
    [3]
    李桂宏, 乔飞. 面向边缘智能设备的持续感知集成电路与系统[J]. 微纳电子与智能制造, 2019, 1(2): 47–61. doi: 10.19816/j.cnki.10-1594/tn.2019.02.007

    LI Guihong and QIAO Fei. Continuous perception integrated circuits and systems for edge-computing smart devices[J]. Micro/Nano Electronics and Intelligent Manufacturing, 2019, 1(2): 47–61. doi: 10.19816/j.cnki.10-1594/tn.2019.02.007
    [4]
    CHOI J. Review of low power image sensors for always-on imaging[C]. 2016 International SoC Design Conference, Jeju, Korea (South), 2016.
    [5]
    PAUL S, HONKOTE V, KIM R G, et al. A sub-cm³ energy-harvesting stacked wireless sensor node featuring a near-threshold voltage IA-32 microcontroller in 14-nm tri-gate CMOS for always-on always-sensing applications[J]. IEEE Journal of Solid-State Circuits, 2017, 52(4): 961–971. doi: 10.1109/JSSC.2016.2638465
    [6]
    CHOI J, SHIN J, KANG Dongwu, et al. Always-on CMOS image sensor for mobile and wearable devices[J]. IEEE Journal of Solid-State Circuits, 2016, 51(1): 130–140. doi: 10.1109/JSSC.2015.2470526
    [7]
    LUO Yi and MIRABBASI S. Always-on CMOS image sensor pixel design for pixel-wise binary coded exposure[C]. 2017 IEEE International Symposium on Circuits and Systems, Baltimore, USA, 2017: 1–4.
    [8]
    YOUNG C, OMID-ZOHOOR A, LAJEVARDI P, et al. 5.3 a data-compressive 1.5b/2.75b log-gradient QVGA image sensor with multi-scale readout for always-on object detection[C]. 2019 IEEE International Solid-State Circuits Conference, San Francisco, USA, 2019: 98–100.
    [9]
    SHI Weisong, CAO Jie, ZHANG Quan, et al. Edge computing: Vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637–646. doi: 10.1109/JIOT.2016.2579198
    [10]
    CHIANG M and ZHANG Tao. Fog and IoT: An overview of research opportunities[J]. IEEE Internet of Things Journal, 2016, 3(6): 854–864. doi: 10.1109/JIOT.2016.2584538
    [11]
    ZHU Bowen, WANG Hong, LIU Yaqing, et al. Skin-inspired haptic memory arrays with an electrically reconfigurable architecture[J]. Advanced Materials, 2016, 28(8): 1559–1566. doi: 10.1002/adma.201504754
    [12]
    JIANG Chengming, LI Qikun, SUN Nan, et al. A high-performance bionic pressure memory device based on piezo-OLED and piezo-memristor as luminescence-fish neuromorphic tactile system[J]. Nano Energy, 2020, 77: 105120. doi: 10.1016/j.nanoen.2020.105120
    [13]
    SUN Yihui, ZHENG Xin, YAN Xiaoqin, et al. Bioinspired tribotronic resistive switching memory for self-powered memorizing mechanical stimuli[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43822–43829. doi: 10.1021/acsami.7b15269
    [14]
    WAN Changjin, CAI Pingqiang, GUO Xintong, et al. An artificial sensory neuron with visual-haptic fusion[J]. Nature Communications, 2020, 11(1): 4602. doi: 10.1038/s41467-020-18375-y
    [15]
    ZHOU Feichi, ZHOU Zheng, CHEN Jiewei, et al. Optoelectronic resistive random access memory for neuromorphic vision sensors[J]. Nature Nanotechnology, 2019, 14(8): 776–782. doi: 10.1038/s41565-019-0501-3
    [16]
    LORENZI P, SUCRE V, ROMANO G, et al. Memristor based neuromorphic circuit for visual pattern recognition[C]. 2015 International Conference on Memristive Systems, Paphos, Cyprus, 2015: 1–2.
    [17]
    HALAWANI Y, MOHAMMAD B, AL-QUTAYRI M, et al. Memristor-based hardware accelerator for image compression[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(12): 2749–2758. doi: 10.1109/TVLSI.2018.2835572
    [18]
    WANG Wei, PEDRETTI G, MILO V, et al. Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses[J]. Science Advances, 2018, 4(9): eaat4752. doi: 10.1126/sciadv.aat4752
    [19]
    LI Qin, YANG Yuze, LAN Tianxiang, et al. MSP-MFCC: Energy-efficient MFCC feature extraction method with mixed-signal processing architecture for wearable speech recognition applications[J]. IEEE Access, 2020, 8: 48720–48730. doi: 10.1109/ACCESS.2020.2979799
    [20]
    CHANG Mengfan, CHEN C F, CHANG Tinghao, et al. 17.3 A 28nm 256kb 6T-SRAM with 280mV improvement in VMIN using a dual-split-control assist scheme[C]. 2015 IEEE International Solid-State Circuits Conference–(ISSCC) Digest of Technical Papers, San Francisco, USA, 2015: 1–3.
    [21]
    KHWA W S, CHEN Jiajing, LI Jiafang, et al. A 65nm 4Kb algorithm-dependent computing-in-memory SRAM unit-macro with 2.3ns and 55.8TOPS/W fully parallel product-sum operation for binary DNN edge processors[C]. 2018 IEEE International Solid–State Circuits Conference, San Francisco, USA, 2018: 496–498.
    [22]
    SI Xin, KHWA W S, CHEN Jiajing, et al. A dual-split 6T SRAM-based computing-in-memory unit-macro with fully parallel product-sum operation for binarized DNN edge processors[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2019, 66(11): 4172–4185. doi: 10.1109/TCSI.2019.2928043
    [23]
    DONG Qing, JELOKA S, SALIGANE M, et al. A 0.3V VDDmin 4+2T SRAM for searching and in-memory computing using 55nm DDC technology[C]. 2017 Symposium on VLSI Circuits, Kyoto, Japan, 2017: C160–C161.
    [24]
    NAJAFI D and EBRAHIMI B. A low-leakage 6T SRAM cell for in-memory computing with high stability[C]. The 2021 29th Iranian Conference on Electrical Engineering, Tehran, Iran, 2021: 98–102.
    [25]
    YU Chengshuo, YOO T, CHAI K T C, et al. A 65-nm 8T SRAM compute-in-memory macro with column ADCs for processing neural networks[J]. IEEE Journal of Solid-State Circuits, 2022, 57(11): 3466–3476. doi: 10.1109/JSSC.2022.3162602
    [26]
    YU Chengshuo, CHAI K T C, KIM T T H, et al. A zero-skipping reconfigurable SRAM in-memory computing macro with binary-searching ADC[C]. The IEEE 47th European Solid State Circuits Conference, Grenoble, France, 2021: 131–134.
    [27]
    GUPTA A K and ACHARYA A. Exploration of 9T SRAM cell for in memory computing application[C]. 2021 Devices for Integrated Circuit, Kalyani, India, 2021: 461–465.
    [28]
    DONG Qing, SINANGIL M E, ERBAGCI B, et al. 15.3 A 351TOPS/W and 372.4GOPS compute-in-memory SRAM macro in 7nm FinFET CMOS for machine-learning applications[C]. 2020 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2020: 242–244.
    [29]
    JIA Hongyang, OZATAY M, TANG Yinqi, et al. 15.1 A programmable neural-network inference accelerator based on scalable in-memory computing[C]. 2021 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2021: 236–238.
    [30]
    KIM J and PARK J. A charge-domain 10T SRAM based in-memory-computing macro for low energy and highly accurate DNN inference[C]. The 2021 18th International SoC Design Conference, Jeju Island, Korea (South), 2021: 89–90.
    [31]
    OH H, KIM H, AHN D, et al. Energy-efficient in-memory binary neural network accelerator design based on 8T2C SRAM cell[J]. IEEE Solid-State Circuits Letters, 2022, 2,5: 70–73. doi: 10.1109/LSSC.2022.3161592
    [32]
    KIM H, CHEN Qian, YOO T, et al. A 1–16b precision reconfigurable digital in-memory computing macro featuring column-MAC architecture and bit-serial computation[C]. The IEEE 45th European Solid State Circuits Conference, Cracow, Poland, 2019: 345–348.
    [33]
    CHIH Y D, LEE P H, FUJIWARA H, et al. 16.4 An 89TOPS/W and 16.3TOPS/mm2 all-digital SRAM-based full-precision compute-in memory macro in 22nm for machine-learning edge applications[C]. 2021 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2021: 252–254.
    [34]
    KIM H, YOO T, KIM T T H, et al. Colonnade: A reconfigurable SRAM-based digital bit-serial compute-in-memory macro for processing neural networks[J]. IEEE Journal of Solid-State Circuits, 2021, 56(7): 2221–2233. doi: 10.1109/JSSC.2021.3061508
    [35]
    LIN Zhiting, ZHU Zhiyong, ZHAN Honglan, et al. Two-direction in-memory computing based on 10T SRAM with horizontal and vertical decoupled read ports[J]. IEEE Journal of Solid-State Circuits, 2021, 56(9): 2832–2844. doi: 10.1109/JSSC.2021.3061260
    [36]
    FUJIWARA H, MORI H, ZHAO Weichang, et al. A 5-nm 254-TOPS/W 221-TOPS/mm2 fully-digital computing-in-memory macro supporting wide-range dynamic-voltage-frequency scaling and simultaneous MAC and write operations[C]. 2022 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2022: 1–3.
    [37]
    YAN Bonan, HSU J L, YU Pangcheng, et al. A 1.041-Mb/mm2 27.38-TOPS/W signed-INT8 dynamic-logic-based ADC-less SRAM compute-in-memory macro in 28nm with reconfigurable bitwise operation for AI and embedded applications[C]. 2022 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2022: 188–190.
    [38]
    龚龙庆, 徐伟栋, 娄冕. SRAM存内计算技术综述[J]. 微电子学与计算机, 2021, 38(9): 1–7. doi: 10.19304/j.cnki.issn1000-7180.2021.09.001

    GONG Longqing, XU Weidong, and LOU Mian. An overview of SRAM in-memory computing[J]. Microelectronics &Computer, 2021, 38(9): 1–7. doi: 10.19304/j.cnki.issn1000-7180.2021.09.001
    [39]
    周正, 丛瑛瑛. 存内计算技术发展趋势分析[J]. 信息通信技术与政策, 2019(9): 65–68. doi: 10.3969/j.issn.1008-9217.2019.09.016

    ZHOU Zheng and CONG Yingying. Analysis on the development trend of Computing in-memory[J]. Information and Communications Technology and Policy, 2019(9): 65–68. doi: 10.3969/j.issn.1008-9217.2019.09.016
    [40]
    张章, 李超, 韩婷婷, 等. 基于忆阻器的感存算一体技术综述[J]. 电子与信息学报, 2021, 43(6): 1498–1509. doi: 10.11999/JEIT201102

    ZHANG Zhang, LI Chao, HAN Tingting, et al. Review of the fused technology of sensing, storage and computing based on memristor[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1498–1509. doi: 10.11999/JEIT201102
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (2254) PDF downloads(489) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return