Advanced Search
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
SUN Weifeng, LI Xiaotong, JI Yonggang, DAI Yongshou. An Adaptive Weak Target Detection Method Using Joint Detection and Tracking for Compact High Frequency Surface Ware Radar[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2955-2964. doi: 10.11999/JEIT220811
Citation: SUN Weifeng, LI Xiaotong, JI Yonggang, DAI Yongshou. An Adaptive Weak Target Detection Method Using Joint Detection and Tracking for Compact High Frequency Surface Ware Radar[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2955-2964. doi: 10.11999/JEIT220811

An Adaptive Weak Target Detection Method Using Joint Detection and Tracking for Compact High Frequency Surface Ware Radar

doi: 10.11999/JEIT220811
Funds:  The National Natural Science Foundation of China (62071493, 61831010)
  • Received Date: 2022-06-20
  • Rev Recd Date: 2023-02-06
  • Available Online: 2023-02-08
  • Publish Date: 2023-08-21
  • The low transmission power and low signal-to-noise ratio increase the challenges of target detection for compact High-Frequency Surface Wave Radar (HFSWR). Track fragmentation often occurs due to missed detections during the tracking procedure. An adaptive weak target detection method using joint detection and tracking is suggested to enhance its detection performance. The tracker will communicate back the current target prediction state to the detector when it discovers that a target track can not be connected to any new plot. The detector establishes a local detection gate on the Range-Doppler (R-D) spectrum, and the detection background is perceived using the binary hypothesis test. According to the detected background, an appropriate detection threshold adjustment method is used to lower the Constant False Alarm Rate (CFAR) detection threshold and determines whether a weak target can be detected. The newly generated plot is obtained after the azimuth estimate and transmitted to the tracker for additional processing if a target is detected. The experimental results with field data reveal that the track length obtained by the proposed method is 29.76% longer than that of the detection before tracking methods, and the tracking time increases by 19.25 minutes on average.
  • loading
  • [1]
    SUN Weifeng, JI Mengjie, HUANG Weimin, et al. Vessel tracking using bistatic compact HFSWR[J]. Remote Sensing, 2020, 12(8): 1266. doi: 10.3390/rs12081266
    [2]
    戴永寿, 马鹏, 孙伟峰, 等. 基于JVC的紧凑型地波雷达海上目标点迹-航迹最优关联方法[J]. 电子与信息学报, 2021, 43(10): 2832–2839. doi: 10.11999/JEIT200604

    DAI Yongshou, MA Peng, SUN Weifeng, et al. An optimal plot-to-track association method based on JVC algorithm for maritime target with compact HFSWR[J]. Journal of Electronics &Information Technology, 2021, 43(10): 2832–2839. doi: 10.11999/JEIT200604
    [3]
    SUN Weifeng, HUANG Weimin, JI Yonggang, et al. A vessel azimuth and course joint re-estimation method for compact HFSWR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 1041–1051. doi: 10.1109/TGRS.2019.2943065
    [4]
    SUN Weifeng, PANG Zhenzhen, HUANG Weimin, et al. Vessel velocity estimation and tracking from Doppler echoes of T/R-R composite compact HFSWR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4427–4440. doi: 10.1109/JSTARS.2021.3071625
    [5]
    杨威, 付耀文, 潘晓刚, 等. 弱目标检测前跟踪技术研究综述[J]. 电子学报, 2014, 42(9): 1786–1793. doi: 10.3969/j.issn.0372-2112.2014.09.019

    YANG Wei, FU Yaowen, PAN Xiaogang, et al. Track-before-detect technique for dim targets: An overview[J]. Acta Electronica Sinica, 2014, 42(9): 1786–1793. doi: 10.3969/j.issn.0372-2112.2014.09.019
    [6]
    王国宏, 李岳峰, 于洪波, 等. 三维空间中高超声速目标修正三级Hough变换-检测前跟踪算法[J]. 电子与信息学报, 2018, 40(4): 890–897. doi: 10.11999/JEIT170622

    WANG Guohong, LI Yuefeng, YU Hongbo, et al. Modified triple-stage Hough transform track-before-detect algorithm in three-dimensional space for hypersonic target[J]. Journal of Electronics &Information Technology, 2018, 40(4): 890–897. doi: 10.11999/JEIT170622
    [7]
    柳超, 孙进平, 袁常顺, 等. Geodesic流多伯努利检测前跟踪方法[J]. 电子学报, 2020, 48(7): 1375–1379. doi: 10.3969/j.issn.0372-2112.2020.07.017

    LIU Chao, SUN Jinping, YUAN Changshun, et al. Multi-Bernoulli track-before-detect method with Geodesic flow[J]. Acta Electronica Sinica, 2020, 48(7): 1375–1379. doi: 10.3969/j.issn.0372-2112.2020.07.017
    [8]
    卢锦, 王鑫. 基于代价参考粒子滤波器组的检测前跟踪算法[J]. 电子与信息学报, 2021, 43(10): 2815–2823. doi: 10.11999/JEIT210234

    LU Jin and WANG Xin. Cost-reference particle filter bank based track-before-detecting algorithm[J]. Journal of Electronics &Information Technology, 2021, 43(10): 2815–2823. doi: 10.11999/JEIT210234
    [9]
    BAO Zhichao, JIANG Qiuxi, and LIU Fangzheng. Multiple model efficient particle filter based track-before-detect for maneuvering weak targets[J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 647–656. doi: 10.23919/JSEE.2020.000040
    [10]
    GROSSI E, LOPS M, and VENTURINO L. A novel dynamic programming algorithm for track-before-detect in radar systems[J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2608–2619. doi: 10.1109/TSP.2013.2251338
    [11]
    REED I S, GAGLIARDI R M, and SHAO H M. Application of three-dimensional filtering to moving target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(6): 898–905. doi: 10.1109/TAES.1983.309401
    [12]
    YAN Bo, PAOLINI E, XU Luping, et al. A target detection and tracking method for multiple radar systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–21. doi: 10.1109/TGRS.2022.3183387
    [13]
    邹鲲, 廖桂生, 李军, 等. 非高斯杂波下知识辅助检测器敏感性分析[J]. 电子与信息学报, 2014, 36(1): 181–186. doi: 10.3724/SP.J.1146.2013.00320

    ZOU Kun, LIAO Guisheng, LI Jun, et al. Sensitivity analysis of knowledge aided detector in non-Gaussian clutter[J]. Journal of Electronics &Information Technology, 2014, 36(1): 181–186. doi: 10.3724/SP.J.1146.2013.00320
    [14]
    卢术平, 宋海洋, 易伟, 等. 基于雷达知识库的知识辅助恒虚警检测算法[J]. 现代雷达, 2017, 39(6): 46–49. doi: 10.16592/j.cnki.1004-7859.2017.06.010

    LU Shuping, SONG Haiyang, YI Wei, et al. Knowledge-aided CFAR algorithm based on radar knowledge base[J]. Modern Radar, 2017, 39(6): 46–49. doi: 10.16592/j.cnki.1004-7859.2017.06.010
    [15]
    刘红亮, 周生华, 刘宏伟, 等. 一种航迹恒虚警的目标检测跟踪一体化算法[J]. 电子与信息学报, 2016, 38(5): 1072–1078. doi: 10.11999/JEIT150638

    LIU Hongliang, ZHOU Shenghua, LIU Hongwei, et al. An integrated target detection and tracking algorithm with constant track false alarm rate[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1072–1078. doi: 10.11999/JEIT150638
    [16]
    鲁瑞莲. 基于信息辅助的雷达检测跟踪一体化方法研究[D]. [硕士论文], 西安电子科技大学, 2018.

    LU Ruilian. Study of information aided radar detection and tracking coprocessing[D]. [Master dissertation], Xidian University, 2018.
    [17]
    CAI Jiajia, ZHOU Hao, HUANG Weimin, et al. Ship detection and direction finding based on time-frequency analysis for compact HF radar[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(1): 72–76. doi: 10.1109/LGRS.2020.2967387
    [18]
    梁建. 高频地波雷达目标二维CFAR检测及软件实现[D]. [硕士论文], 中国海洋大学, 2014.

    LIANG Jian. Target CFAR detection method and software implementation with two-dimension data for HFSWR[D]. [Master dissertation], Ocean University of China, 2014.
    [19]
    GOLDMAN H. Performance of the excision CFAR detector in the presence of interferers[J]. IEE Proceedings F (Radar and Signal Processing), 1990, 137(3): 163–171. doi: 10.1049/ip-f-2.1990.0024
    [20]
    BORDONARO S, WILLETT P, and BAR-SHALOM Y. Decorrelated unbiased converted measurement Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1431–1444. doi: 10.1109/TAES.2014.120563
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (720) PDF downloads(115) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return