Citation: | TANG Lun, LI Shirui, DU Yucong, CHEN Qianbin. Deployment Algorithm of Service Function Chain Based on Multi-Agent Soft Actor-Critic Learning[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2893-2901. doi: 10.11999/JEIT220803 |
[1] |
CHAHBAR M, DIAZ G, DANDOUSH A, et al. A comprehensive survey on the E2E 5G network slicing model[J]. IEEE Transactions on Network and Service Management, 2021, 18(1): 49–62. doi: 10.1109/TNSM.2020.3044626
|
[2] |
GONZALEZ A J, NENCIONI G, KAMISINSKI A, et al. Dependability of the NFV orchestrator: state of the art and research challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3307–3329. doi: 10.1109/COMST.2018.2830648
|
[3] |
SUN Gang, XU Zhu, YU Hongfang, et al. Low-latency and resource-efficient service function chaining orchestration in network function virtualization[J]. IEEE Internet of Things Journal, 2020, 7(7): 5760–5772. doi: 10.1109/JIOT.2019.2937110
|
[4] |
LI Junling, SHI Weisen, YE Qiang, et al. Joint virtual network topology design and embedding for cybertwin-enabled 6G core networks[J]. IEEE Internet of Things Journal, 2021, 8(22): 16313–16325. doi: 10.1109/JIOT.2021.3097053
|
[5] |
CHAI Rong, XIE Desheng, LUO Lei, et al. Multi-objective optimization-based virtual network embedding algorithm for software-defined networking[J]. IEEE Transactions on Network and Service Management, 2020, 17(1): 532–546. doi: 10.1109/TNSM.2019.2953297
|
[6] |
CAO Haotong, DU Jianbo, ZHAO Haitao, et al. Resource-ability assisted service function chain embedding and scheduling for 6G networks with virtualization[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3846–3859. doi: 10.1109/TVT.2021.3065967
|
[7] |
SOLOZABAL R, CEBERIO J, SANCHOYERTO A, et al. Virtual network function placement optimization with deep reinforcement learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(2): 292–303. doi: 10.1109/JSAC.2019.2959183
|
[8] |
CHEN Jing, CHEN Jia, and ZHANG Hongke. DRL-QOR: Deep reinforcement learning-based QoS/QoE-aware adaptive online orchestration in NFV-enabled networks[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 1758–1774. doi: 10.1109/TNSM.2021.3055494
|
[9] |
HUANG Haojun, ZENG Cheng, ZHAO Yangmin, et al. Scalable orchestration of service function chains in NFV-enabled networks: A federated reinforcement learning approach[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(8): 2558–2571. doi: 10.1109/JSAC.2021.3087227
|
[10] |
GHARBAOUI M, CONTOLI C, DAVOLI G, et al. Demonstration of latency-aware and self-adaptive service chaining in 5G/SDN/NFV infrastructures[C]. 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Verona, Italy, 2018: 1–2.
|
[11] |
LIU Yu, SHANG Xiaojun, and YANG Yuanyuan. Joint SFC deployment and resource management in heterogeneous edge for latency minimization[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(8): 2131–2143. doi: 10.1109/TPDS.2021.3062341
|
[12] |
YANG Jian, ZHANG Shuben, WU Xiaomin, et al. Online learning-based server provisioning for electricity cost reduction in data center[J]. IEEE Transactions on Control Systems Technology, 2017, 25(3): 1044–1051. doi: 10.1109/TCST.2016.2575801
|
[13] |
PEI Jianing, HONG Peilin, XUE Kaiping, et al. Resource aware routing for service function chains in SDN and NFV-enabled network[J]. IEEE Transactions on Services Computing, 2021, 14(4): 985–997. doi: 10.1109/TSC.2018.2849712
|
[14] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
|
[15] |
LI Han, LÜ Tiejun, and ZHANG Xuewei. Deep deterministic policy gradient based dynamic power control for self-powered ultra-dense networks[C]. 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 2018: 1–6.
|