Citation: | CAO Yi, WU Weiguan, LI Ping, XIA Yu, GAO Qingyuan. Skeleton Action Recognition Based on Spatio-temporal Feature Enhanced Graph Convolutional Network[J]. Journal of Electronics & Information Technology, 2023, 45(8): 3022-3031. doi: 10.11999/JEIT220749 |
[1] |
钱涛. 基于Kinect的动态姿势识别方法在医疗康复中的应用[D]. [硕士论文], 浙江工业大学, 2020.
QIAN Tao. Application of Kinect-based dynamic posture recognition method in medical rehabilitation[D]. [Master dissertation], Zhejiang University of Technology, 2020.
|
[2] |
周风余, 尹建芹, 杨阳, 等. 基于时序深度置信网络的在线人体动作识别[J]. 自动化学报, 2016, 42(7): 1030–1039. doi: 10.16383/j.aas.2016.c150629
ZHOU Fengyu, YIN Jianqin, YANG Yang, et al. Online recognition of human actions based on temporal deep belief neural network[J]. Acta Automatica Sinica, 2016, 42(7): 1030–1039. doi: 10.16383/j.aas.2016.c150629
|
[3] |
LIU Zhi, ZHANG Chenyang, and TIAN Yingli. 3D-based deep convolutional neural network for action recognition with depth sequences[J]. Image and Vision Computing, 2016, 55: 93–100. doi: 10.1016/j.imavis.2016.04.004
|
[4] |
XIA Rongjie, LI Yanshan, and LUO Wenhan. LAGA-Net: Local-and-global attention network for skeleton based action recognition[J]. IEEE Transactions on Multimedia, 2022, 24: 2648–2661. doi: 10.1109/TMM.2021.3086758
|
[5] |
ZHANG Pengfei, LAN Cuiling, XING Junliang, et al. View adaptive neural networks for high performance skeleton-based human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1963–1978. doi: 10.1109/TPAMI.2019.2896631
|
[6] |
JIANG Xinghao, XU Ke, and SUN Tanfeng. Action recognition scheme based on skeleton representation with DS-LSTM network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(7): 2129–2140. doi: 10.1109/TCSVT.2019.2914137
|
[7] |
PLIZZARI C, CANNICI M, and MATTEUCCI M. Spatial temporal transformer network for skeleton-based action recognition[C]. International Conference on Pattern Recognition. ICPR International Workshops and Challenges, Milano, Italy, 2021: 694–701.
|
[8] |
ZHANG Jiaxu, XIE Wei, WANG Chao, et al. Graph-aware transformer for skeleton-based action recognition[J]. The Visual Computer, To be published.
|
[9] |
YAN Sijie, XIONG Yuanjun, and LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 7444–7452.
|
[10] |
SHI Lei, ZHANG Yifan, CHENG Jian, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 12018–12027.
|
[11] |
CAO Yi, LIU Chen, HUANG Zhilong, et al. Skeleton-based action recognition with temporal action graph and temporal adaptive graph convolution structure[J]. Multimedia Tools and Applications, 2021, 80(19): 29139–29162. doi: 10.1007/s11042-021-11136-z
|
[12] |
PENG Wei, SHI Jingang, and ZHAO Guoying. Spatial temporal graph deconvolutional network for skeleton-based human action recognition[J]. IEEE Signal Processing Letters, 2021, 28: 244–248. doi: 10.1109/LSP.2021.3049691
|
[13] |
YANG Hongye, GU Yuzhang, ZHU Jianchao, et al. PGCN-TCA: Pseudo graph convolutional network with temporal and channel-wise attention for skeleton-based action recognition[J]. IEEE Access, 2020, 8: 10040–10047. doi: 10.1109/ACCESS.2020.2964115
|
[14] |
CHEN Shuo, XU Ke, JIANG Xinghao, et al. Spatiotemporal-spectral graph convolutional networks for skeleton-based action recognition[C]. 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shenzhen, China, 2021: 1–6.
|
[15] |
石跃祥, 朱茂清. 基于骨架动作识别的协作卷积Transformer网络[J]. 电子与信息学报, 2023, 45(4): 1485–1493.
SHI Yuexiang and ZHU Maoqing. Collaborative convolutional transformer network for skeleton-based action recognition[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1485–1493.
|
[16] |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]. The 6th International Conference on Learning Representations (ICLR), Vancouver, Canada, 2018: 1254–1263.
|
[17] |
WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7794–7803.
|
[18] |
WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 2575–7075.
|
[19] |
SHAHROUDY A, LIU Jun, NG T T, et al. NTU RGB+D: A large scale dataset for 3D human activity analysis[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 1010–1019.
|
[20] |
LIU Jun, SHAHROUDY A, PEREZ M, et al. NTU RGB+D 120: A large-scale benchmark for 3D human activity understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2684–2701. doi: 10.1109/tpami.2019.2916873
|
[21] |
ZHANG Pengfei, LAN Cuiling, ZENG Wenjun, et al. Semantics-guided neural networks for efficient skeleton-based human action recognition[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 1109–1118.
|
[22] |
LIU Jun, SHAHROUDY A, WANG Gang, et al. Skeleton-based online action prediction using scale selection network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(6): 1453–1467. doi: 10.1109/TPAMI.2019.2898954
|
[23] |
LI Maosen, CHEN Siheng, CHEN Xu, et al. Actional-structural graph convolutional networks for skeleton-based action recognition[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2019: 3590–3598.
|