Advanced Search
Volume 45 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
JIANG Lin, ZHANG Dingyue, LI Yuancheng, CAO Fei, LONG Maosen. 1T1M Reconfigurable Array Structure Based on Memristor[J]. Journal of Electronics & Information Technology, 2023, 45(8): 3047-3056. doi: 10.11999/JEIT220718
Citation: JIANG Lin, ZHANG Dingyue, LI Yuancheng, CAO Fei, LONG Maosen. 1T1M Reconfigurable Array Structure Based on Memristor[J]. Journal of Electronics & Information Technology, 2023, 45(8): 3047-3056. doi: 10.11999/JEIT220718

1T1M Reconfigurable Array Structure Based on Memristor

doi: 10.11999/JEIT220718
Funds:  The National Natural Science Foundation of China (61834005), The Natural Science Foundation of Shaanxi Province (2020JM-525), The Science and Technology Project of Yulin City (CXY-2020-026)
  • Received Date: 2022-06-01
  • Rev Recd Date: 2022-10-28
  • Available Online: 2022-11-07
  • Publish Date: 2023-08-21
  • Memristor or Resistive Random Access Memory (ReRAM) is a novel Non-Volatile Memory (NVM) with storage and computing functions, and it is the basic device of non-Von Neumann computer architecture which is Processing In Memory (PIM). To solve the speed mismatch problem between computing speed and storage of reconfigurable array processor, the model of Voltage ThrEshold Adaptive Memristor (VTEAM) is adopted. And through the simulation of Linear Technology Simulation Program with Integrated Circuit Emphasis (LTSPICE), the complete set of Boolean logic is realized. On this basis, a 1T1M memristor cross array is designed, which has the characteristics of simple structure, reconfiguration and high parallelism. Monte Carlo (MC) method is used for tolerance analysis, and the calculation accuracy had reached 0.998. Compared with the existing advanced array, the performance of this array is improved effectively, the processing delay and energy consumption are reduced, and this array can be combined with the reconfigurable array processor to deal with the “memory wall” problem.
  • loading
  • [1]
    LI Haitong, GAO Baobin, CHEN Zaoming, et al. A learnable parallel processing architecture towards unity of memory and computing[J]. Scientific Reports, 2015, 5: 13330. doi: 10.1038/srep13330
    [2]
    SHAFIEE A, NAG A, MURALIMANOHAR N, et al. ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars[C]. 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 2016: 14–26.
    [3]
    TANG Shibin, YIN Shouyi, ZHENG Shixuan, et al. AEPE: An area and power efficient RRAM crossbar-based accelerator for deep CNNs[C]. 2017 IEEE 6th Non-Volatile Memory Systems and Applications Symposium, Hsinchu, China, 2017: 1–6.
    [4]
    ZHANG Xunming, ZHANG Quan, YANG Jianguo, et al. Novel hybrid computing architecture with memristor-based processing-in-memory for data-intensive applications[C]. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 2018: 1–3.
    [5]
    TU Fengbin, WU Weiwei, WANG Yang, et al. Evolver: A deep learning processor with on-device quantization–voltage–frequency tuning[J]. IEEE Journal of Solid-State Circuits, 2021, 56(2): 658–673. doi: 10.1109/JSSC.2020.3021661
    [6]
    LI Ziru, YAN Bonan, and LI Hai. ReSiPE: ReRAM-based single-spiking processing-in-memory engine[C]. 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, USA, 2020: 1–6.
    [7]
    JIN Hai, LIU Cong, LIU Haikun, et al. ReHy: A ReRAM-based digital/analog hybrid PIM architecture for accelerating CNN training[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(11): 2872–2884. doi: 10.1109/TPDS.2021.3138087
    [8]
    LALCHHANDAMA F, DATTA K, CHAKRABORTY S, et al. CoMIC: Complementary Memristor based in-memory computing in 3D architecture[J]. Journal of Systems Architecture, 2022, 126: 102480. doi: 10.1016/j.sysarc.2022.102480
    [9]
    TU Fengbin, WANG Yiqi, WU Zihan, et al. A 28nm 29.2TFLOPS/W BF16 and 36.5TOPS/W INT8 reconfigurable digital CIM processor with unified FP/INT pipeline and bitwise in-memory booth multiplication for cloud deep learning acceleration[C]. 2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisc, USA, 2022: 1–3.
    [10]
    WANG Xiaoping, LI Shuai, LIU Hui, et al. A compact scheme of reading and writing for memristor-based multivalued memory[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(7): 1505–1509. doi: 10.1109/TCAD.2017.2753199
    [11]
    孙晶茹, 李梦圆, 康可欣, 等. 基于异构忆阻器的1T2M多值存储交叉阵列设计[J]. 电子与信息学报, 2021, 43(6): 1533–1540. doi: 10.11999/JEIT201108

    SUN Jingru, LI Mengyuan, KANG Kexin, et al. Design of heterogeneous memristor based 1T2M multi-value memory crossbar array[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1533–1540. doi: 10.11999/JEIT201108
    [12]
    YU Shengqi, SHAFIK R, BUNNAM T, et al. Optimized multi-memristor model based low energy and resilient current-mode multiplier design[C]. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2021: 1230–1233.
    [13]
    WILLIAMS R S. How we found the missing memristor[J]. IEEE Spectrum, 2008, 45(12): 28–35. doi: 10.1109/MSPEC.2008.4687366
    [14]
    PERSHIN Y V and DI VENTRA M. SPICE model of memristive devices with threshold[J]. Radioengineering, 2013, 22(2): 485–489. doi: 10.48550/arXiv.1204.2600
    [15]
    KVATINSKY S, FRIEDMAN E G, KOLODNY A, et al. TEAM: ThrEshold adaptive memristor model[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2013, 60(1): 211–221. doi: 10.1109/TCSI.2012.2215714
    [16]
    BIOLEK D, DI VENTRA M, and PERSHIN Y V. Reliable SPICE simulations of memristors, memcapacitors and meminductors[J]. Radioengineering, 2013, 22(4): 945–968. doi: 10.48550/arXiv.1307.2717
    [17]
    缪向水, 李祎, 孙华军, 等. 忆阻器导论[M]. 北京: 科学出版社, 2018.

    MIU Xiangshui, LI Yi, SUN Huajun, et al. Introduction to Memristor[M]. Beijing: Science Press, 2018.
    [18]
    CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/TCT.1971.1083337
    [19]
    LEHTONEN E and LAIHO M. Stateful implication logic with memristors[C]. 2009 IEEE/ACM International Symposium on Nanoscale Architectures, San Francisco, USA, 2009: 33–36.
    [20]
    KVATINSKY S, WALD N, SATAT G, et al. MRL — memristor ratioed logic[C]. 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications, Turin, Italy, 2012: 1–6.
    [21]
    KVATINSKY S, BELOUSOV D, LIMAN S, et al. MAGIC—Memristor-aided logic[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2014, 61(11): 895–899. doi: 10.1109/TCSII.2014.2357292
    [22]
    WANG Xiaoyuan, JIN Chenxi, ESHRAGHIAN J K, et al. A behavioral SPICE model of a binarized memristor for digital logic implementation[J]. Circuits, Systems, and Signal Processing, 2021, 40(6): 2682–2693. doi: 10.1007/s00034-020-01611-7
    [23]
    GUPTA S, IMANI M, and ROSING T. FELIX: Fast and energy-efficient logic in memory[C]. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Diego, USA, 2018: 1–7.
    [24]
    毛海宇, 舒继武. 基于3D忆阻器阵列的神经网络内存计算架构[J]. 计算机研究与发展, 2019, 56(6): 1149–1160. doi: 10.7544/issn1000-1239.2019.20190099

    MAO Haiyu and SHU Jiwu. 3D memristor array based neural network processing in memory architecture[J]. Journal of Computer Research and Development, 2019, 56(6): 1149–1160. doi: 10.7544/issn1000-1239.2019.20190099
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views (849) PDF downloads(235) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return