Advanced Search
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
WANG Weiqiong, XIE Qiong, XU Haojie, CUI Meng. Secure Computation of Two-party Multisets with Rational Numbers[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1722-1730. doi: 10.11999/JEIT220712
Citation: WANG Weiqiong, XIE Qiong, XU Haojie, CUI Meng. Secure Computation of Two-party Multisets with Rational Numbers[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1722-1730. doi: 10.11999/JEIT220712

Secure Computation of Two-party Multisets with Rational Numbers

doi: 10.11999/JEIT220712
Funds:  The National Natural Science Foundation of China (11901049), The Natural Science Basis Research Plan in Shaanxi Province of China (2020JQ-343), The Young Talent Fund of University Association for Science and Technology in Shaanxi, China (20200505)
  • Received Date: 2022-06-01
  • Rev Recd Date: 2022-08-27
  • Available Online: 2022-09-06
  • Publish Date: 2023-05-10
  • Secure Multiparty Computation (SMC) of sets has wide applications in joint data analysis, secure search over sensitive data, data security exchange. Based on geometric coding of rational numbers and the scalar product protocol, two secure computation protocols for computing the intersection and the union of two multisets with private rational numbers are proposed for the first time. The simulation paradigm is used to prove the privacy- preserving properties of proposed protocols in the semi-honest model, and the protocols’ efficiency is verified by theoretical analysis and programming test. Compared with existing protocols, the proposed protocols do not need to specify a universal set, which can protect the privacy of set potential. Moreover, the multiplication operation is mainly used in the implementation of the protocols, which achieves the security of information theory.
  • loading
  • [1]
    YAO A C. Protocols for secure computations[C]. The 23rd Annual Symposium on Foundations of Computer Science, Chicago, USA, 1982: 160–164.
    [2]
    TANG Chunming, SHI Guihua, and YAO Zhengan. Secure multi-party computation protocol for sequencing problem[J]. Science China Information Sciences, 2011, 54(8): 1654–1662. doi: 10.1007/s11432-011-4272-1
    [3]
    TOFT T. Sub-linear, secure comparison with two non-colluding parties[C]. The 14th International Conference on Practice and Theory in Public Key Cryptography, Taormina, Italy, 2011: 174–191.
    [4]
    LI Shundong, WU Chunying, WANG Daoshun, et al. Secure multiparty computation of solid geometric problems and their applications[J]. Information Sciences, 2014, 282: 401–413. doi: 10.1016/j.ins.2014.04.004
    [5]
    郭奕旻, 周素芳, 窦家维, 等. 高效的区间保密计算及应用[J]. 计算机学报, 2017, 40(7): 1664–1679. doi: 10.11897/SP.J.1016.2017.01664

    GUO Yimin, ZHOU Sufang, DOU Jiawei, et al. Efficient privacy-preserving interval computation and its applications[J]. Chinese Journal of Computers, 2017, 40(7): 1664–1679. doi: 10.11897/SP.J.1016.2017.01664
    [6]
    张卫国, 孙嫚, 陈振华, 等. 空间位置关系的安全多方计算及其应用[J]. 电子与信息学报, 2016, 38(9): 2294–2300. doi: 10.11999/JEIT160102

    ZHANG Weiguo, SUN Man, CHEN Zhenhua, et al. Secure multi-party computation of spatial relationship and its application[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2294–2300. doi: 10.11999/JEIT160102
    [7]
    NIKSEFAT S, SADEGHIYAN B, MOHASSEL P, et al. ZIDS: A privacy-preserving intrusion detection system using secure two-party computation protocols[J]. The Computer Journal, 2014, 57(4): 494–509. doi: 10.1093/comjnl/bxt019
    [8]
    GRIGORIEV D and SHPILRAIN V. Yao’s millionaires’ problem and decoy-based public key encryption by classical physics[J]. International Journal of Foundations of Computer Science, 2014, 25(4): 409–417. doi: 10.1142/S0129054114400036
    [9]
    LI Shundong, WANG Daoshun, and DAI Yiqi. Symmetric cryptographic protocols for extended millionaires’ problem[J]. Science in China Series F:Information Sciences, 2009, 52(6): 974–982. doi: 10.1007/s11432-009-0109-6
    [10]
    FREEDMAN M J, NISSIM K, and PINKAS B. Efficient private matching and set intersection[C]. International Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, 2004: 1–19.
    [11]
    陈振华, 李顺东, 黄琼, 等. 非加密方法安全计算两种集合关系[J]. 软件学报, 2018, 29(2): 473–482. doi: 10.13328/j.cnki.jos.005262

    CHEN Zhenhua, LI Shundong, HUANG Qiong, et al. Secure computation of two set-relationships with the unencrypted method[J]. Journal of Software, 2018, 29(2): 473–482. doi: 10.13328/j.cnki.jos.005262
    [12]
    SEO J H, CHEON J H, and KATZ J. Constant-round multi-party private set union using reversed Laurent series[C]. The 15th International Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Germany, 2012: 398–412.
    [13]
    CHUN Jiyong, HONG D, JEONG I R, et al. Privacy-preserving disjunctive normal form operations on distributed sets[J]. Information Sciences, 2013, 231: 113–122. doi: 10.1016/j.ins.2011.07.003
    [14]
    KISSNER L and SONG D. Privacy-preserving set operations[C]. The 25th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2005: 241–257.
    [15]
    BLANTON M and AGUIAR E. Private and oblivious set and multiset operations[J]. International Journal of Information Security, 2016, 15(5): 493–518. doi: 10.1007/s10207-015-0301-1
    [16]
    窦家维, 陈明艳. 多重集的保密计算及应用[J]. 电子学报, 2020, 48(1): 204–208. doi: 10.3969/j.issn.0372-2112.2020.01.025

    DOU Jiawei and CHEN Mingyan. Secure multiset operations and their applications[J]. Acta Electronica Sinica, 2020, 48(1): 204–208. doi: 10.3969/j.issn.0372-2112.2020.01.025
    [17]
    CHUNG H and KIM M. Encoding of rational numbers and their homomorphic computations for FHE-based applications[J]. International Journal of Foundations of Computer Science, 2018, 29(6): 1023–1044. doi: 10.1142/S0129054118500193
    [18]
    李顺东, 杜润萌, 杨颜璟, 等. 有理数相等的保密判定[J]. 电子学报, 2020, 48(10): 1933–1937. doi: 10.3969/j.issn.0372-2112.2020.10.009

    LI Shundong, DU Runmeng, YANG Yanjing, et al. Privately determining equality of rational numbers[J]. Acta Electronica Sinica, 2020, 48(10): 1933–1937. doi: 10.3969/j.issn.0372-2112.2020.10.009
    [19]
    窦家维, 刘旭红, 王文丽. 有理数域上两方集合的高效保密计算[J]. 计算机学报, 2020, 43(8): 1397–1413. doi: 10.11897/SP.J.1016.2020.01397

    DOU Jiawei, LIU Xuhong, and WANG Wenli. Privacy preserving two-party rational set computation[J]. Chinese Journal of Computers, 2020, 43(8): 1397–1413. doi: 10.11897/SP.J.1016.2020.01397
    [20]
    GOLDREICH O. Foundations of Cryptography Volume 2: Basic Applications[M]. Cambridge: Cambridge University Press, 2004.
    [21]
    REIMER B, FRIED R, MEHLER B, et al. Brief report: Examining driving behavior in young adults with high functioning autism spectrum disorders: A pilot study using a driving simulation paradigm[J]. Journal of Autism and Developmental Disorders, 2013, 43(9): 2211–2217. doi: 10.1007/s10803-013-1764-4
    [22]
    CLIFTON C, KANTARCIOGLU M, VAIDYA J, et al. Tools for privacy preserving distributed data mining[J]. ACM SIGKDD Explorations Newsletter, 2002, 4(2): 28–34. doi: 10.1145/772862.772867
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(5)

    Article Metrics

    Article views (455) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return