Citation: | GAO Ying, WANG Wei. A Survey of Multi-party Private Set Intersection[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1859-1872. doi: 10.11999/JEIT220664 |
[1] |
HALLGREN P, ORLANDI C, and SABELFELD A. PrivatePool: Privacy-preserving ridesharing[C]. 2017 IEEE 30th Computer Security Foundations Symposium, Santa Barbara, USA, 2017: 276–291.
|
[2] |
European Union. Regulation (EU) 2016/679 of the European parliament and of the council[R]. Brussels: European Union, 2016.
|
[3] |
ZHAO Chuan, ZHAO Shengnan, ZHAO Minghao, et al. Secure multi-party computation: Theory, practice and applications[J]. Information Sciences, 2019, 476: 357–372. doi: 10.1016/j.ins.2018.10.024
|
[4] |
MEADOWS C. A more efficient cryptographic matchmaking protocol for use in the absence of a continuously available third party[C]. 1986 IEEE Symposium on Security and Privacy, Oakland, USA, 1986: 134–134.
|
[5] |
HUBERMAN B A, FRANKLIN M, and HOGG T. Enhancing privacy and trust in electronic communities[C]. The 1st ACM Conference on Electronic Commerce, Denver, USA, 1999: 78–86.
|
[6] |
FREEDMAN M J, NISSIM K, and PINKAS B. Efficient private matching and set intersection[C]. International Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, 2004: 1–19.
|
[7] |
DE CRISTOFARO E and TSUDIK G. Practical private set intersection protocols with linear complexity[C]. 14th International Conference on Financial Cryptography and Data Security, Tenerife, Spain, 2010: 143–159.
|
[8] |
FREEDMAN M J, HAZAY C, NISSIM K, et al. Efficient set intersection with simulation-based security[J]. Journal of Cryptology, 2016, 29(1): 115–155. doi: 10.1007/s00145-014-9190-0
|
[9] |
窦家维, 刘旭红, 周素芳, 等. 高效的集合安全多方计算协议及应用[J]. 计算机学报, 2018, 41(8): 1844–1860. doi: 10.11897/SP.J.1016.2018.01844
DOU Jiawei, LIU Xuhong, ZHOU Sufang, et al. Efficient secure multiparty set operations protocols and their application[J]. Chinese Journal of Computers, 2018, 41(8): 1844–1860. doi: 10.11897/SP.J.1016.2018.01844
|
[10] |
周素芳, 李顺东, 郭奕旻, 等. 保密集合相交问题的高效计算[J]. 计算机学报, 2018, 41(2): 464–480. doi: 10.11897/SP.J.1016.2018.00464
ZHOU Sufang, LI Shundong, GUO Yimin, et al. Efficient secure set intersection problem computation[J]. Chinese Journal of Computers, 2018, 41(2): 464–480. doi: 10.11897/SP.J.1016.2018.00464
|
[11] |
唐春明, 林旭慧. 隐私保护集合交集计算协议[J]. 信息网络安全, 2020, 20(1): 9–15. doi: 10.3969/j.issn.1671-1122.2020.01.002
TANG Chunming and LIN Xuhui. Protocol of privacy-preserving set intersection computation[J]. Netinfo Security, 2020, 20(1): 9–15. doi: 10.3969/j.issn.1671-1122.2020.01.002
|
[12] |
HUANG Yan, EVANS D, and KATZ J. Private set intersection: Are garbled circuits better than custom protocols?[C]. 19th Annual Network and Distributed System Security Symposium, San Diego, USA, 2012.
|
[13] |
PINKAS B, SCHNEIDER T, SEGEV G, et al. Phasing: Private set intersection using permutation-based hashing[C]. The 24th USENIX Conference on Security Symposium, Washington, USA, 2015: 515–530.
|
[14] |
PINKAS B, SCHNEIDER T, WEINERT C, et al. Efficient circuit-based PSI via cuckoo hashing[C]. 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, 2018: 125–157.
|
[15] |
PINKAS B, SCHNEIDER T, TKACHENKO O, et al. Efficient circuit-based PSI with linear communication[C]. 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, 2019: 122–153.
|
[16] |
CHANDRAN N, GUPTA D, and SHAH A. Circuit-PSI with linear complexity via relaxed batch OPPRF[J]. Proceedings on Privacy Enhancing Technologies, 2022, 2022(1): 353–372. doi: 10.2478/popets-2022-0018
|
[17] |
DONG Changyu, CHEN Liqun, and WEN Zikai. When private set intersection meets big data: An efficient and scalable protocol[C]. The 2013 ACM SIGSAC Conference on Computer & Communications Security, Berlin, Germany, 2013: 789–800.
|
[18] |
PINKAS B, SCHNEIDER T, and ZOHNER M. Faster private set intersection based on OT extension[C]. The 23rd USENIX Conference on Security Symposium, San Diego, USA, 2014: 797–812.
|
[19] |
KOLESNIKOV V, KUMARESAN R, ROSULEK M, et al. Efficient batched oblivious PRF with applications to private set intersection[C]. The 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016: 818–829.
|
[20] |
ORRÙ M, ORSINI E, and SCHOLL P. Actively secure 1-out-of-N OT extension with application to private set intersection[C]. Cryptographers’ Track at the RSA Conference 2017, San Francisco, USA, 2017: 381–396.
|
[21] |
RINDAL P and ROSULEK M. Improved private set intersection against malicious adversaries[C]. 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, 2017: 235–259.
|
[22] |
RINDAL P and ROSULEK M. Malicious-secure private set intersection via dual execution[C]. The 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, USA, 2017: 1229–1242.
|
[23] |
PINKAS B, SCHNEIDER T, and ZOHNER M. Scalable private set intersection based on OT extension[J]. ACM Transactions on Privacy and Security, 2018, 21(2): 7. doi: 10.1145/3154794
|
[24] |
PINKAS B, ROSULEK M, TRIEU N, et al. SpOT-light: Lightweight private set intersection from sparse OT extension[C]. 39th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2019: 401–431.
|
[25] |
PINKAS B, ROSULEK M, TRIEU N, et al. PSI from PaXoS: Fast, malicious private set intersection[C]. 39th Annual International Conference on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology, Zagreb, Croatia, 2020: 739–767.
|
[26] |
CHASE M and MIAO Peihan. Private set intersection in the internet setting from lightweight oblivious PRF[C]. 40th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2020: 34–63.
|
[27] |
RINDAL P and SCHOPPMANN P. VOLE-PSI: Fast OPRF and circuit-PSI from vector-OLE[C]. 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology, Zagreb, Croatia, 2021: 901–930.
|
[28] |
程楠, 赵运磊. 一种高效的关于两方集合并/交集基数的隐私计算方法[J]. 密码学报, 2021, 8(2): 352–364. doi: 10.13868/j.cnki.jcr.000443
CHENG Nan and ZHAO Yunlei. Efficient approach regarding two-party privacy-preserving set union/intersection cardinality[J]. Journal of Cryptologic Research, 2021, 8(2): 352–364. doi: 10.13868/j.cnki.jcr.000443
|
[29] |
申立艳, 陈小军, 时金桥, 等. 隐私保护集合交集计算技术研究综述[J]. 计算机研究与发展, 2017, 54(10): 2153–2169. doi: 10.7544/issn1000-1239.2017.20170461
SHEN Liyan, CHEN Xiaojun, SHI Jinqiao, et al. Survey on private preserving set intersection technology[J]. Journal of Computer Research and Development, 2017, 54(10): 2153–2169. doi: 10.7544/issn1000-1239.2017.20170461
|
[30] |
崔泓睿, 刘天怡, 郁昱. 带隐私保护的集合交集计算协议的发展现状综述[J]. 信息安全与通信保密, 2019(3): 48–67. doi: 10.3969/j.issn.1009-8054.2019.03.010
CUI Hongrui, LIU Tianyi, and YU Yu. A survey on private set intersection[J]. Information Security and Communications Privacy, 2019(3): 48–67. doi: 10.3969/j.issn.1009-8054.2019.03.010
|
[31] |
魏立斐, 刘纪海, 张蕾, 等. 面向隐私保护的集合交集计算综述[J]. 计算机研究与发展, 2022, 59(8): 1782–1799. doi: 10.7544/issn1000-1239.20210685
WEI Lifei, LIU Jihai, ZHANG Lei, et al. Survey of privacy preserving oriented set intersection computation[J]. Journal of Computer Research and Development, 2022, 59(8): 1782–1799. doi: 10.7544/issn1000-1239.20210685
|
[32] |
黄翠婷, 张帆, 孙小超, 等. 隐私集合求交技术的理论与金融实践综述[J]. 信息通信技术与政策, 2021, 47(6): 50–56. doi: 10.12267/j.issn.2096-5931.2021.06.006
HUANG Cuiting, ZHANG Fan, SUN Xiaochao, et al. A survey of private set intersection technology and finance practice[J]. Information and Communications Technology and Policy, 2021, 47(6): 50–56. doi: 10.12267/j.issn.2096-5931.2021.06.006
|
[33] |
RABIN M O. How to exchange secrets with oblivious transfer[R]. Cambridge: Harvard University, 2005.
|
[34] |
ISHAI Y, KILIAN J, NISSIM K, et al. Extending oblivious transfers efficiently[C]. 23rd Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2003: 145–161.
|
[35] |
KOLESNIKOV V and KUMARESAN R. Improved OT extension for transferring short secrets[C]. 33rd Annual Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2013: 54–70.
|
[36] |
YANG Kang, WENG Chenkai, LAN Xiao, et al. Ferret: Fast extension for correlated OT with small communication[C/OL]. The 2020 ACM SIGSAC Conference on Computer and Communications Security, 2020: 1607–1626.
|
[37] |
KISSNER L and SONG D. Privacy-preserving set operations[C]. 25th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2005: 241–257.
|
[38] |
HAZAY C and VENKITASUBRAMANIAM M. Scalable multi-party private set-intersection[C]. 20th IACR International Conference on Practice and Theory in Public-Key Cryptography, Amsterdam, The Netherlands, 2017: 175–203.
|
[39] |
BAY A, ERKIN Z, ALISHAHI M, et al. Multi-party private set intersection protocols for practical applications[C/OL]. The 18th International Conference on Security and Cryptography, 2021: 515–522.
|
[40] |
BAY A, ERKIN Z, HOEPMAN J H, et al. Practical multi-party private set intersection protocols[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 1–15. doi: 10.1109/TIFS.2021.3118879
|
[41] |
VOS J, CONTI M, and ERKIN Z. Fast multi-party private set operations in the star topology from secure ANDs and ORs[EB/OL].https://eprint.iacr.org/2022/721, 2022.
|
[42] |
张蕾, 贺崇德, 魏立斐. 高效且恶意安全的三方小集合隐私交集计算协议[J]. 计算机研究与发展, 2022, 59(10): 2286–2298. doi: 10.7544/issn1000-1239.20220471
ZHANG Lei, HE Chongde, and WEI Lifei. Efficient and malicious secure three-party private set intersection computation protocols for small sets[J]. Journal of Computer Research and Development, 2022, 59(10): 2286–2298. doi: 10.7544/issn1000-1239.20220471
|
[43] |
LI Ronghua and WU Chuankun. An unconditionally secure protocol for multi-party set intersection[C]. 5th International Conference on Applied Cryptography and Network Security, Zhuhai, China, 2007: 226–236.
|
[44] |
SANG Yingpeng and SHEN Hong. Privacy preserving set intersection protocol secure against malicious behaviors[C]. Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies, Adelaide, Australia, 2007: 461–468.
|
[45] |
SANG Yingpeng and SHEN Hong. Privacy preserving set intersection based on bilinear groups[C]. The Thirty-First Australasian Conference on Computer Science, Wollongong, Australia, 2008: 47–54.
|
[46] |
SANG Yingpeng and SHEN Hong. Efficient and secure protocols for privacy-preserving set operations[J]. ACM Transactions on Information and System Security, 2009, 13(1): 9. doi: 10.1145/1609956.1609965
|
[47] |
CHEON J H, JARECKI S, and SEO J H. Multi-party privacy-preserving set intersection with quasi-linear complexity[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2012, E95.A(8): 1366–1378. doi: 10.1587/transfun.E95.A.1366
|
[48] |
GHOSH S and NILGES T. An algebraic approach to maliciously secure private set intersection[C]. 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, 2019: 154–185.
|
[49] |
QIU Zhi, YANG Kang, YU Yu, et al. Maliciously secure multi-party PSI with lower bandwidth and faster computation[C]. 24th International Conference on Information and Communications Security, Canterbury, UK, 2022: 69–88.
|
[50] |
DEBNATH S K, CHOUDHURY T, KUNDU N, et al. Post-quantum secure multi-party private set-intersection in star network topology[J]. Journal of Information Security and Applications, 2021, 58: 102731. doi: 10.1016/j.jisa.2020.102731
|
[51] |
KOLESNIKOV V, MATANIA N, PINKAS B, et al. Practical multi-party private set intersection from symmetric-key techniques[C]. The 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, USA, 2017: 1257–1272.
|
[52] |
KAVOUSI A, MOHAJERI J, and SALMASIZADEH M. Efficient scalable multi-party private set intersection using oblivious PRF[C]. 17th International Workshop on Security and Trust Management, Darmstadt, Germany, 2021: 81–99.
|
[53] |
INBAR R, OMRI E, and PINKAS B. Efficient scalable multiparty private set-intersection via garbled bloom filters[C]. 11th International Conference on Security and Cryptography for Networks, Amalfi, Italy, 2018: 235–252.
|
[54] |
ZHANG En, LIU Fenghao, LAI Qiqi, et al. Efficient multi-party private set intersection against malicious adversaries[C]. The 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop, London, England, 2019: 93–104.
|
[55] |
BEN-EFRAIM A, NISSENBAUM O, OMRI E, et al. PSImple: Practical multiparty maliciously-secure private set intersection[C]. The 2022 ACM on Asia Conference on Computer and Communications Security, Nagasaki, Japan, 2022: 1098–1112.
|
[56] |
NEVO O, TRIEU N, and YANAI A. Simple, fast malicious multiparty private set intersection[C]. The 2021 ACM SIGSAC Conference on Computer and Communications Security, Seoul, Korea, 2021: 1151–1165.
|
[57] |
GORDON S D, HAZAY C, and LE P H. Fully secure PSI via MPC-in-the-head[EB/OL]. https://eprint.iacr.org/2022/379, 2022.
|
[58] |
KAMARA S, MOHASSEL P, RAYKOVA M, et al. Scaling private set intersection to billion-element sets[C]. 18th International Conference on Financial Cryptography and Data Security, Christ Church, Barbados, 2014: 195–215.
|
[59] |
MIYAJI A and NISHIDA S. A scalable multiparty private set intersection[C]. 9th International Conference on Network and System Security, New York, USA, 2015: 376–385.
|
[60] |
ZHU Hongliang, CHEN Meiqi, SUN Maohua, et al. Outsourcing set intersection computation based on bloom filter for privacy preservation in multimedia processing[J]. Security and Communication Networks, 2018, 2018: 5841967. doi: 10.1155/2018/5841967
|
[61] |
王勤, 魏立斐, 刘纪海, 等. 基于云服务器辅助的多方隐私交集计算协议[J]. 计算机科学, 2021, 48(10): 301–307. doi: 10.11896/jsjkx.210300308
WANG Qin, WEI Lifei, LIU Jihai, et al. Private set intersection protocols among multi-party with cloud server aided[J]. Computer Science, 2021, 48(10): 301–307. doi: 10.11896/jsjkx.210300308
|
[62] |
ABADI A, TERZIS S, and DONG Changyu. O-PSI: Delegated private set intersection on outsourced datasets[C]. 30th IFIP TC 11 International Conference on ICT Systems Security and Privacy Protection, Hamburg, Germany, 2015: 3–17.
|
[63] |
ABADI A, TERZIS S, and DONG Changyu. VD-PSI: Verifiable delegated private set intersection on outsourced private datasets[C]. 20th International Conference on Financial Cryptography and Data Security, Christ Church, Barbados, 2016: 149–168.
|
[64] |
ABADI A, TERZIS S, METERE R, et al. Efficient delegated private set intersection on outsourced private datasets[J]. IEEE Transactions on Dependable and Secure Computing, 2019, 16(4): 608–624. doi: 10.1109/TDSC.2017.2708710
|
[65] |
ABADI A, DONG Changyu, MURDOCH S J, et al. Multi-party updatable delegated private set intersection[C]. 26th International Conference on Financial Cryptography and Data Security, Grenada, Grenada, 2022: 100–119.
|
[66] |
ZHANG En, LI Fenghua, NIU Ben, et al. Server-aided private set intersection based on reputation[J]. Information Sciences, 2017, 387: 180–194. doi: 10.1016/j.ins.2016.09.056
|
[67] |
张恩, 金刚刚. 基于同态加密和Bloom过滤器的云外包多方隐私集合比较协议[J]. 计算机应用, 2018, 38(8): 2256–2260. doi: 10.11772/j.issn.1001-9081.2018010075
ZHANG En and JIN Ganggang. Cloud outsourcing multiparty private set intersection protocol based on homomorphic encryption and Bloom filter[J]. Journal of Computer Applications, 2018, 38(8): 2256–2260. doi: 10.11772/j.issn.1001-9081.2018010075
|
[68] |
MIYAJI A, NAKASHO K, and NISHIDA S. Privacy-preserving integration of medical data[J]. Journal of Medical Systems, 2017, 41(3): 37. doi: 10.1007/s10916-016-0657-4
|
[69] |
HU Keji and ZHANG Wensheng. mPSI: Many-to-one private set intersection[C]. 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing, New York, USA, 2017: 187–192.
|
[70] |
DEBNATH S K, STǍNICǍ P, KUNDU N, et al. Secure and efficient multiparty private set intersection cardinality[J]. Advances in Mathematics of Communications, 2021, 15(2): 365–386. doi: 10.3934/amc.2020071
|
[71] |
SHI Runhua. Quantum multiparty privacy set intersection cardinality[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(4): 1203–1207. doi: 10.1109/TCSII.2020.3032550
|
[72] |
赵雪玲, 家珠亮, 李顺东. 集合交集问题的安全计算[J]. 密码学报, 2022, 9(2): 294–307. doi: 10.13868/j.cnki.jcr.000520
ZHAO Xueling, JIA Zhuliang, and LI Shundong. A secure multiparty intersection computation[J]. Journal of Cryptologic Research, 2022, 9(2): 294–307. doi: 10.13868/j.cnki.jcr.000520
|
[73] |
TRIEU N, YANAI A, and GAO Jiahui. Multiparty private set intersection cardinality and its applications[EB/OL]. https://eprint.iacr.org/2022/735, 2022.
|
[74] |
杨亚涛, 赵阳, 张卷美, 等. 同态密码理论与应用进展[J]. 电子与信息学报, 2021, 43(2): 475–487. doi: 10.11999/JEIT191019
YANG Yatao, ZHAO Yang, ZHANG Juanmei, et al. Recent development of theory and application on homomorphic encryption[J]. Journal of Electronics &Information Technology, 2021, 43(2): 475–487. doi: 10.11999/JEIT191019
|
[75] |
DAVIDSON A and CID C. An efficient toolkit for computing private set operations[C]. 22nd Australasian Conference on Information Security and Privacy, Auckland, New Zealand, 2017: 261–278.
|
[76] |
GARIMELLA G, PINKAS B, ROSULEK M, et al. Oblivious key-value stores and amplification for private set intersection[C/OL]. 41st Annual International Cryptology Conference on Advances in Cryptology, 2021: 395–425.
|
[77] |
LU Linpeng and DING Ning. Multi-party private set intersection in vertical federated learning[C]. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications, Guangzhou, China, 2020: 707–714.
|
[78] |
KISSNER L and SONG D. Private and threshold set-intersection[R]. Pittsburgh: Carnegie Mellon University, 2004.
|
[79] |
MAHDAVI R A, HUMPHRIES T, KACSMAR B, et al. Practical over-threshold multi-party private set intersection[C]. Annual Computer Security Applications Conference, Austin, USA, 2020: 772–783.
|
[80] |
SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612–613. doi: 10.1145/359168.359176
|
[81] |
PAILLIER P. Public-key cryptosystems based on composite degree residuosity classes[C]. International Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech Republic, 1999: 223–238.
|
[82] |
KERSCHBAUM F, BISWAS D, and DE HOOGH S. Performance comparison of secure comparison protocols[C]. 2009 20th International Workshop on Database and Expert Systems Application, Linz, Austria, 2009: 133–136.
|
[83] |
CHANDRAN N, DASGUPTA N, GUPTA D, et al. Efficient linear multiparty PSI and extensions to circuit/quorum PSI[C/OL]. The 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021: 1182–1204.
|
[84] |
ZHAO Yongjun and CHOW S S M. Are you the one to share? Secret transfer with access structure[J]. Proceedings on Privacy Enhancing Technologies, 2017, 2017(1): 149–169. doi: 10.1515/popets-2017-0010
|
[85] |
ZHAO Yongjun and CHOW S S M. Can you find the one for me?[C]. The 2018 Workshop on Privacy in the Electronic Society, Toronto, Canada, 2018: 54–65.
|
[86] |
GHOSH S and SIMKIN M. The communication complexity of threshold private set intersection[C]. 39th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2019: 3–29.
|
[87] |
ZHANG En, CHANG Jian, and LI Yu. Efficient threshold private set intersection[J]. IEEE Access, 2021, 9: 6560–6570. doi: 10.1109/ACCESS.2020.3048743
|
[88] |
ZHAO Shengnan, MA Ming, SONG Xiangfu, et al. Lightweight threshold private set intersection via oblivious transfer[C]. 16th International Conference on Wireless Algorithms, Systems, and Applications, Nanjing, China, 2021: 108–116.
|
[89] |
BONEH D, GENNARO R, GOLDFEDER S, et al. Threshold cryptosystems from threshold fully homomorphic encryption[C]. 38th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2018: 565–596.
|
[90] |
BADRINARAYANAN S, MIAO Peihan, RAGHURAMAN S, et al. Multi-party threshold private set intersection with sublinear communication[C/OL]. 24th IACR International Conference on Practice and Theory of Public Key Cryptography, 2021: 349–379.
|
[91] |
BRANCO P, DÖTTLING N, and PU Sihang. Multiparty cardinality testing for threshold private intersection[C/OL]. 24th IACR International Conference on Practice and Theory of Public Key Cryptography, 2021: 32–60.
|