Advanced Search
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
JIAO Lianmeng, WANG Feng, PAN Quan. Transfer Fuzzy C-Means Clustering Based on Maximum Mean Discrepancy[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2216-2225. doi: 10.11999/JEIT220645
Citation: JIAO Lianmeng, WANG Feng, PAN Quan. Transfer Fuzzy C-Means Clustering Based on Maximum Mean Discrepancy[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2216-2225. doi: 10.11999/JEIT220645

Transfer Fuzzy C-Means Clustering Based on Maximum Mean Discrepancy

doi: 10.11999/JEIT220645
Funds:  The National Natural Science Foundation of China (62171386, 61801386, 61790552), Key Research and Development Program in Shaanxi Province (2022GY-081)
  • Received Date: 2022-05-19
  • Rev Recd Date: 2022-12-25
  • Available Online: 2022-12-28
  • Publish Date: 2023-06-10
  • In this paper, a Transfer Fuzzy C-Means clustering algorithm based on Maximum Mean Discrepancy (TFCM-MMD) is proposed. TFCM-MMD solves the problem that the transfer learning effect of the transfer fuzzy C-means clustering algorithm is weakened when the data distribution between source domain and target domain is very different. The algorithm measures inter-domain differences based on the maximum mean discrepancy criterion, and reduces the differences of data distribution between source domain and target domain in the common subspace by learning the projection matrix of source domain and target domain, so as to improve the effect of transfer learning. Finally, experiments based on synthetic datasets and medical image segmentation datasets verify further the effectiveness of TFCM-MMD algorithm in solving transfer clustering problems with large inter-domain differences.
  • loading
  • [1]
    BORLEA I D, PRECUP R E, BORLEA A B, et al. A unified form of fuzzy c-means and k-means algorithms and its partitional implementation[J]. Knowledge-Based Systems, 2021, 214: 106731. doi: 10.1016/j.knosys.2020.106731
    [2]
    车杭骏, 陈科屹, 王雅娣, 等. 带有深度邻域信息的模糊C均值聚类算法[J]. 华中科技大学学报:自然科学版, 2022, 50(11): 135–141. doi: 10.13245/j.hust.221117

    CHE Hangjun, CHEN Keyi, WANG Yadi, et al. Fuzzy c-means clustering algorithm with deep neighborhood information[J]. Journal of Huazhong University of Science and Technology:Nature Science Edition, 2022, 50(11): 135–141. doi: 10.13245/j.hust.221117
    [3]
    白璐, 赵鑫, 孔钰婷, 等. 谱聚类算法研究综述[J]. 计算机工程与应用, 2021, 57(14): 15–26. doi: 10.3778/j.issn.1002-8331.2103-0547

    BAI Lu, ZHAO Xin, KONG Yuting, et al. Survey of spectral clustering algorithms[J]. Computer Engineering and Applications, 2021, 57(14): 15–26. doi: 10.3778/j.issn.1002-8331.2103-0547
    [4]
    SHARMA K K and SEAL A. Multi-view spectral clustering for uncertain objects[J]. Information Sciences, 2021, 547: 723–745. doi: 10.1016/j.ins.2020.08.080
    [5]
    丁健宇, 祁云嵩, 赵呈祥. 类中心极大的多视角极大熵聚类算法[J]. 计算机应用研究, 2022, 39(4): 1019–1023,1059. doi: 10.19734/j.issn.1001-3695.2021.09.0399

    DING Jianyu, QI Yunsong, and ZHAO Chengxiang. Multi-view maximum entropy clustering algorithm with center distance maximization[J]. Application Research of Computers, 2022, 39(4): 1019–1023,1059. doi: 10.19734/j.issn.1001-3695.2021.09.0399
    [6]
    李烨桐, 郭洁, 祁霖, 等. 密度敏感模糊核最大熵聚类算法[J]. 控制理论与应用, 2022, 39(1): 67–82. doi: 10.7641/CTA.2021.10168

    LI Yetong, GUO Jie, QI Lin, et al. Density-sensitive fuzzy kernel maximum entropy clustering algorithm[J]. Control Theory &Applications, 2022, 39(1): 67–82. doi: 10.7641/CTA.2021.10168
    [7]
    卢娜, 张广涛, 刘付鑫, 等. 基于LTSA与谱聚类的水电机组振动故障诊断方法[J]. 武汉大学学报:工学版, 2021, 54(11): 1064–1069. doi: 10.14188/j.1671-8844.2021-11-011

    LU Na, ZHANG Guangtao, LIU Fuxin, et al. Vibrant fault diagnosis method for hydroelectric unit based on LTSA and spectral clustering[J]. Engineering Journal of Wuhan University, 2021, 54(11): 1064–1069. doi: 10.14188/j.1671-8844.2021-11-011
    [8]
    徐金东, 赵甜雨, 冯国政, 等. 基于上下文模糊C均值聚类的图像分割算法[J]. 电子与信息学报, 2021, 43(7): 2079–2086. doi: 10.11999/JEIT200263

    XU Jindong, ZHAO Tianyu, FENG Guozheng, et al. Image segmentation algorithm based on context fuzzy c-means clustering[J]. Journal of Electronics &Information Technology, 2021, 43(7): 2079–2086. doi: 10.11999/JEIT200263
    [9]
    WANG Feng, JIAO Lianmeng, and PAN Quan. A survey on unsupervised transfer clustering[C]. 2021 Chinese Control Conference, Shanghai, China, 2021: 7361–7365.
    [10]
    KONG Shu and WANG Donghui. Transfer heterogeneous unlabeled data for unsupervised clustering[C]. The 21st International Conference on Pattern Recognition, Tsukuba, Japan, 2012: 1193–1196.
    [11]
    DENG Zhaohong, JIANG Yizhang, CHUNG F L, et al. Transfer prototype-based fuzzy clustering[J]. IEEE Transactions on Fuzzy Systems, 2016, 24(5): 1210–1232. doi: 10.1109/TFUZZ.2015.2505330
    [12]
    GARGEES R, KELLER J M, and POPESCU M. TLPCM: Transfer learning possibilistic C-means[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(4): 940–952. doi: 10.1109/tfuzz.2020.3005273
    [13]
    JIAO Lianmeng, WANG Feng, LIU Zhunga, et al. TECM: Transfer learning-based evidential c-means clustering[J]. Knowledge-Based Systems, 2022, 257: 109937. doi: 10.1016/j.knosys.2022.109937
    [14]
    WANG Rongrong, ZHOU Jin, LIU Xiangdao, et al. Transfer clustering based on Gaussian mixture model[C]. 2019 IEEE Symposium Series on Computational Intelligence, Xiamen, China, 2019: 2522–2526.
    [15]
    DANG Bozhan, ZHOU Jin, LIU Xiangdao, et al. Transfer learning based kernel fuzzy clustering[C]. 2019 International Conference on Fuzzy Theory and Its Applications, New Taipei, China, 2019: 21–25.
    [16]
    秦军, 张远鹏, 蒋亦樟, 等. 多代表点自约束的模糊迁移聚类[J]. 山东大学学报:工学版, 2019, 49(2): 107–115. doi: 10.6040/j.issn.1672-3961.0.2018.458

    QIN Jun, ZHANG Yuanpeng, JIANG Yizhang, et al. Transfer fuzzy clustering based on self-constraint of multiple medoids[J]. Journal of Shandong University:Engineering Science, 2019, 49(2): 107–115. doi: 10.6040/j.issn.1672-3961.0.2018.458
    [17]
    王丽娟, 丁世飞, 丁玲. 基于迁移学习的软子空间聚类算法[J]. 南京大学学报:自然科学, 2020, 56(4): 515–523. doi: 10.13232/j.cnki.jnju.2020.04.009

    WANG Lijuan, DING Shifei, and DING Ling. Soft subspace clustering algorithm based on transfer learning[J]. Journal of Nanjing University:Natural Science, 2020, 56(4): 515–523. doi: 10.13232/j.cnki.jnju.2020.04.009
    [18]
    陈爱国, 王士同. 具有隐私保护功能的知识迁移聚类算法[J]. 电子与信息学报, 2016, 38(3): 523–531. doi: 10.11999/JEIT150645

    CHEN Aiguo and WANG Shitong. Knowledge transfer clustering algorithm with privacy protection[J]. Journal of Electronics &Information Technology, 2016, 38(3): 523–531. doi: 10.11999/JEIT150645
    [19]
    聂飞, 高艳丽, 邓赵红, 等. 可能性匹配知识迁移原型聚类算法[J]. 智能系统学报, 2020, 15(5): 978–989. doi: 10.11992/tis.201810028

    NIE Fei, GAO Yanli, DENG Zhaohong, et al. Possibility-matching based knowledge transfer prototype clustering algorithm[J]. CAAI Transactions on Intelligent Systems, 2020, 15(5): 978–989. doi: 10.11992/tis.201810028
    [20]
    夏洋洋, 刘渊, 黄亚东. 中心约束的跨源学习可能性C均值聚类算法[J]. 计算机工程与应用, 2018, 54(5): 72–78. doi: 10.3778/j.issn.1002-8331.1610-0055

    XIA Yangyang, LIU Yuan, and HUANG Yadong. Central-constraints possibilistic C-means algorithms based on source domain[J]. Computer Engineering and Applications, 2018, 54(5): 72–78. doi: 10.3778/j.issn.1002-8331.1610-0055
    [21]
    DAI Wenyuan, YANG Qiang, XUE Guirong, et al. Self-taught clustering[C]. The 25th International Conference on Machine Learning, Helsinki, Finland, 2008: 200–207.
    [22]
    YANG Liu, JING Liping, LIU Bo, et al. Common latent space identification for heterogeneous co-transfer clustering[J]. Neurocomputing, 2017, 269: 29–39. doi: 10.1016/j.neucom.2016.08.148
    [23]
    JIANG Yizhang, GU Xiaoqing, WU Dongrui, et al. A novel negative-transfer-resistant fuzzy clustering model with a shared cross-domain transfer latent space and its application to brain CT image segmentation[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(1): 40–52. doi: 10.1109/TCBB.2019.2963873
    [24]
    XIA Kaijian, YIN Hongsheng, JIN Yong, et al. Cross-domain brain CT image smart segmentation via shared hidden space transfer FCM clustering[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2020, 16(2s): 61. doi: 10.1145/3357233
    [25]
    齐晓轩, 都丽, 洪振麒. 基于流形距离核的自适应迁移谱聚类算法[J]. 计算机应用与软件, 2020, 37(8): 265–273. doi: 10.3969/j.issn.1000-386x.2020.08.046

    Qi Xiaoxuan, DU Li, and HONG Zhenqi. An adaptive transfer spectral clustering algorithm based on manifold distance kernel[J]. Computer Applications and Software, 2020, 37(8): 265–273. doi: 10.3969/j.issn.1000-386x.2020.08.046
    [26]
    张晓彤, 张宪超, 刘晗. 基于特征和实例迁移的加权多任务聚类[J]. 计算机学报, 2019, 42(12): 2614–2630. doi: 10.11897/SP.J.1016.2019.02614

    ZHANG Xiaotong, ZHANG Xianchao, and LIU Han. Weighed multi-task clustering by feature and instance transfer[J]. Chinese Journal of Computers, 2019, 42(12): 2614–2630. doi: 10.11897/SP.J.1016.2019.02614
    [27]
    王丽娟, 张霖, 尹明, 等. 基于正交基的多视图迁移谱聚类[J]. 计算机工程, 2022, 48(10): 37–44,54. doi: 10.19678/j.issn.1000-3428.0063091

    WANG Lijuan, ZHANG Lin, YIN Ming, et al. Orthogonal basis-based multiview transfer spectral clustering[J]. Computer Engineering, 2022, 48(10): 37–44,54. doi: 10.19678/j.issn.1000-3428.0063091
    [28]
    YU Litao, DANG Yanzhong, and YANG Guangfei. Transfer clustering via constraints generated from topics[C]. 2012 IEEE International Conference on Systems, Man, and Cybernetics, Seoul, Korea (South), 2012: 3203–3208.
    [29]
    LIU Yang, JING Liping, and YU Jian. Heterogeneous co-transfer spectral clustering[C]. The 9th International Conference on Rough Sets and Knowledge Technology, Shanghai, China, 2014: 352–363.
    [30]
    LI Sheng and FU Yun. Unsupervised transfer learning via low-rank coding for image clustering[C]. 2016 International Joint Conference on Neural Networks, Vancouver, Canada, 2016: 1795–1802.
    [31]
    PAL N R and BEZDEK J C. On cluster validity for the fuzzy c-means model[J]. IEEE Transactions on Fuzzy Systems, 1995, 3(3): 370–379. doi: 10.1109/91.413225
    [32]
    HATHAWAY R J, BEZDEK J C, and TUCKER W T. An improved convergence theory for the fuzzy c-means clustering algorithms[J]. Analysis of Fuzzy Information, 1987, 3: 123–131.
    [33]
    GAN G and WU J. A convergence theorem for the fuzzy subspace clustering (FSC) algorithm[J]. Pattern Recognition, 2008, 41(6): 1939–1947. doi: 10.1016/j.patcog.2007.11.011
    [34]
    COCOSCO C A, KOLLOKIAN V, KWAN R K S, et al. BrainWeb: Online interface to a 3D MRI simulated brain database[J]. NeuroImage, 1997, 5(4): 425.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (706) PDF downloads(135) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return