Citation: | ZHANG Shihui, ZHAO Weibo, WANG Lei, WANG Wei, LI Qunpeng. MSIANet: Multi-scale Interactive Attention Crowd Counting Network[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2236-2245. doi: 10.11999/JEIT220644 |
[1] |
徐涛, 段仪浓, 杜佳浩, 等. 基于多尺度增强网络的人群计数方法[J]. 电子与信息学报, 2021, 43(6): 1764–1771. doi: 10.11999/JEIT200331
XU Tao, DUAN Yinong, DU Jiahao, et al. Crowd counting method based on multi-scale enhanced network[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1764–1771. doi: 10.11999/JEIT200331
|
[2] |
万洪林, 王晓敏, 彭振伟, 等. 基于新型多尺度注意力机制的密集人群计数算法[J]. 电子与信息学报, 2022, 44(3): 1129–1136. doi: 10.11999/JEIT210163
WAN Honglin, WANG Xiaomin, PENG Zhenwei, et al. Dense crowd counting algorithm based on new multi-scale attention mechanism[J]. Journal of Electronics &Information Technology, 2022, 44(3): 1129–1136. doi: 10.11999/JEIT210163
|
[3] |
TOPKAYA I S, ERDOGAN H, and PORIKLI F. Counting people by clustering person detector outputs[C]. Proceedings of the 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Seoul, Korea (South), 2014: 313–318.
|
[4] |
LI Min, ZHANG Zhaoxiang, HUANG Kaiqi, et al. Estimating the number of people in crowded scenes by MID based foreground segmentation and head-shoulder detection[C]. Proceedings of the 19th International Conference on Pattern Recognition, Tampa, USA, 2008: 1–4.
|
[5] |
CHAN A B, LIANG Z S J, and VASCONCELOS N. Privacy preserving crowd monitoring: Counting people without people models or tracking[C]. Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–7.
|
[6] |
CHEN Ke, LOY C C, GONG Shaogang, et al. Feature mining for localised crowd counting[C]. Proceedings of the British Machine Vision Conference, Surrey, UK, 2012: 21.1–21.11.
|
[7] |
LI Yuhong, ZHANG Xiaofan, and CHEN Deming. CSRNet: Dilated convolutional neural networks for understanding the highly congested scenes[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1091–1100.
|
[8] |
OH M H, OLSEN P, and RAMAMURTHY K N. Crowd counting with decomposed uncertainty[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11799–11806. doi: 10.1609/aaai.v34i07.6852
|
[9] |
XU Yanyu, ZHONG Ziming, LIAN Dongze, et al. Crowd counting with partial annotations in an image[C]. Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 15550–15559.
|
[10] |
XU Chenfeng, LIANG Dingkang, XU Yongchao, et al. AutoScale: Learning to scale for crowd counting[J]. International Journal of Computer Vision, 2022, 130(2): 405–434. doi: 10.1007/s11263-021-01542-z
|
[11] |
MA Yiming, SANCHEZ V, and GUHA T. FusionCount: Efficient crowd counting via multiscale feature fusion[C]. Proceedings of the IEEE International Conference on Image Processing, Bordeaux, France, 2022.
|
[12] |
ZHANG Yingying, ZHOU Desen, CHEN Siqin, et al. Single-image crowd counting via multi-column convolutional neural network[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 589–597.
|
[13] |
CAO Xinkun, WANG Zhipeng, ZHAO Yanyun, et al. Scale aggregation network for accurate and efficient crowd counting[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 757–773.
|
[14] |
SAM D B, SURYA S, and BABU R V. Switching convolutional neural network for crowd counting[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 4031–4039.
|
[15] |
JIANG Xiaolong, XIAO Zehao, ZHANG Baochang, et al. Crowd counting and density estimation by trellis encoder-decoder networks[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 6126–6135.
|
[16] |
YANG Yifan, LI Guorong, DU Dawei, et al. Embedding perspective analysis into multi-column convolutional neural network for crowd counting[J]. IEEE Transactions on Image Processing, 2020, 30: 1395–1407. doi: 10.1109/TIP.2020.3043122
|
[17] |
LIAN Dongze, CHEN Xianing, LI Jing, et al. Locating and counting heads in crowds with a depth prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, To be Published.
|
[18] |
ZAND M, DAMIRCHI H, FARLEY A, et al. Multiscale crowd counting and localization by multitask point supervision[C]. Proceedings of 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, Singapore, 2022.
|
[19] |
LIU Ning, LONG Yongchao, ZOU Changqing, et al. ADCrowdNet: An attention-injective deformable convolutional network for crowd understanding[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3220–3229.
|
[20] |
TIAN Mengxiao, GUO Hao, and LONG Chengjiang. Multi-level attentive convoluntional neural network for crowd counting[J]. arXiv: 2105.11422, 2021.
|
[21] |
LIU Yichao, SHAO Zongru, and HOFFMANN N. Global attention mechanism: Retain information to enhance channel-spatial interactions[J]. arXiv: 2112.05561, 2021.
|
[22] |
IDREES H, TAYYAB M, ATHREY K, et al. Composition loss for counting, density map estimation and localization in dense crowds[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 544–559.
|
[23] |
IDREES H, SALEEMI I, SEIBERT C, et al. Multi-source multi-scale counting in extremely dense crowd images[C]. Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2547–2554.
|