Advanced Search
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
ZHOU Mu, JI Changyin, XIE Liangbo, CAO Jingyang, NIE Wei. Optical Quantum Imaging Method Based on Filter Optimization of Coincidence Counting[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2089-2097. doi: 10.11999/JEIT220627
Citation: ZHOU Mu, JI Changyin, XIE Liangbo, CAO Jingyang, NIE Wei. Optical Quantum Imaging Method Based on Filter Optimization of Coincidence Counting[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2089-2097. doi: 10.11999/JEIT220627

Optical Quantum Imaging Method Based on Filter Optimization of Coincidence Counting

doi: 10.11999/JEIT220627
Funds:  The National Natural Science Foundation of China (61901076), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-K202000605, KJQN202000630), The Chongqing Technology Innovation and Application Development Special Project (S2022-02N), The Chongqing Natural Science Foundation Project (CSTB2022NSCQ-MSX0895), The Postgraduate Scientific Research and Innovation Project of Chongqing (CYS21298)
  • Received Date: 2022-05-17
  • Rev Recd Date: 2022-11-14
  • Available Online: 2022-11-18
  • Publish Date: 2023-06-10
  • Quantum Imaging(QI) is an important research direction in the field of quantum optics due to its anti-reconnaissance, anti-interference and high resolution. In order to solve the problem of image quality degradation caused by the abnormal coincidence count value caused by ambient light in the actual quantum imaging process, a photon quantum imaging method based on coincidence count filter optimization is proposed in this paper. Firstly, three-layer Discrete Wavelet Transform(DWT) on the original coincident count values is performed to obtain the corresponding wavelet coefficients. Secondly, Gaussian filtering is performed to denoise the high-frequency components in the wavelet coefficients, and the denoised coincident count values through inverse wavelet transform is obtained in this paper. Finally, according to these coincidence count values, the linear mapping method is used to achieve quantum imaging of the target. In this paper, the influence of image pixel number, single pixel exposure time and coincidence gate width on imaging results by simulation are analyzed, and the actual quantum imaging optical path is built to verify the validity of the simulation analysis.
  • loading
  • [1]
    GILABERTE BASSET M, SETZPFANDT F, STEINLECHNER F, et al. Perspectives for applications of quantum imaging[J]. Laser & Photonics Reviews, 2019, 13(10): 1900097. doi: 10.1002/lpor.201900097
    [2]
    杨蕴, 李玉, 王玉. 一种数学形态学的量子图像去噪方法[J]. 遥感信息, 2018, 33(2): 17–25. doi: 10.3969/j.issn.1000-3177.2018.02.003

    YANG Yun, LI Yu, and WANG Yu. A mathematical morphology method for quantum image denoising[J]. Remote Sensing Information, 2018, 33(2): 17–25. doi: 10.3969/j.issn.1000-3177.2018.02.003
    [3]
    王文远. 基于图像信噪比选择优化高斯滤波尺度[J]. 电子与信息学报, 2009, 31(10): 2483–2487. doi: 10.3724/SP.J.1146.2008.01392

    WANG Wenyuan. Selecting the optimal Gaussian filtering scale via the SNR of image[J]. Journal of Electronics &Information Technology, 2009, 31(10): 2483–2487. doi: 10.3724/SP.J.1146.2008.01392
    [4]
    ZHAO Yuxing, LI Yue, and YANG Baojun. Low-frequency desert noise intelligent suppression in seismic data based on multiscale geometric analysis convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 650–665. doi: 10.1109/TGRS.2019.2938836
    [5]
    张智, 林栩凌, 何红艳. 一种基于量子力学的遥感图像滤波方法研究[J]. 红外与激光工程, 2016, 45(S2): S226001. doi: 10.3788/IRLA201645.S226001

    ZHANG Zhi, LIN Xuling, and HE Hongyan. Filtering method for remote sensing image based on quantum mechanics[J]. Infrared and Laser Engineering, 2016, 45(S2): S226001. doi: 10.3788/IRLA201645.S226001
    [6]
    毕思文, 陈浩, 帅通, 等. 一种基于双树复小波变换的图像去噪算法[J]. 无线电工程, 2019, 49(1): 27–31. doi: 10.3969/j.issn.1003-3106.2019.01.06

    BI Siwen, CHEN Hao, SHUAI Tong, et al. An image denoising algorithm based on double-tree complex wavelet transform[J]. Radio Engineering, 2019, 49(1): 27–31. doi: 10.3969/j.issn.1003-3106.2019.01.06
    [7]
    CHEN Yan, NI Rui, WU Yaodong, et al. Phase-matching controlled orbital angular momentum conversion in periodically poled crystals[J]. Physical Review Letters, 2020, 125(14): 143901. doi: 10.1103/PhysRevLett.125.143901
    [8]
    MAGAÑA-LOAIZA O S and BOYD R W. Quantum imaging and information[J]. Reports on Progress in Physics, 2019, 82(12): 124401. doi: 10.1088/1361-6633/ab5005
    [9]
    ABEBE T, GEMECHU N, SHOGILE K, et al. Entanglement quantification using various inseparability criteria for correlated photons[J]. Romanian Journal of Physics, 2020, 65(3/4): 107.
    [10]
    SHAPIRO J H and BOYD R W. The physics of ghost imaging[J]. Quantum Information Processing, 2012, 11(4): 949–993. doi: 10.1007/s11128-011-0356-5
    [11]
    XU Chenni and WANG Ligang. Theory of light propagation in arbitrary two-dimensional curved space[J]. Photonics Research, 2021, 9(12): 2486–2493. doi: 10.1364/PRJ.435993
    [12]
    NDAGANO B, DEFIENNE H, LYONS A, et al. Imaging and certifying high-dimensional entanglement with a single-photon avalanche diode camera[J]. npj Quantum Information, 2020, 6(1): 94. doi: 10.1038/s41534-020-00324-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (381) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return