Citation: | XIE Zhidong, TAN Xin, YUAN Xinwang, YANG Gang, HAN Yu. Small Sample Signal Modulation Recognition Algorithm Based on Support Vector Machine Enhanced by Generative Adversarial Networks Generated Data[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2071-2080. doi: 10.11999/JEIT220624 |
[1] |
丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1): 2–10. doi: 10.3969/j.issn.1001-0548.2011.01.001
DING Shifei, QI Bingjuan, and TAN Hongyan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2–10. doi: 10.3969/j.issn.1001-0548.2011.01.001
|
[2] |
BOUTTE D and SANTHANAM B. ISI effects in a hybrid ICA-SVM modulation recognition algorithm[C]. 2008 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2008: 457–460.
|
[3] |
VAPNIK V N. The Nature of Statistical Learning Theory[M]. New York: Springer, 1995.
|
[4] |
张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000, 26(1): 32–42. doi: 10.16383/j.aas.2000.01.005
ZHANG Xuegong. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1): 32–42. doi: 10.16383/j.aas.2000.01.005
|
[5] |
REN Mingqiu, CAI Jinyan, ZHU Yuanqing, et al. Radar emitter signal classification based on mutual information and fuzzy support vector machines[C]. 2008 9th International Conference on Signal Processing, Beijing, China, 2008: 1641–1646.
|
[6] |
LIN Chunfu and WANG Shengde. Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 464–471. doi: 10.1109/72.991432
|
[7] |
SUN Xiaoyong, SU Shaojing, HUANG Zhiping, et al. Blind modulation format identification using decision tree twin support vector machine in optical communication system[J]. Optics Communications, 2019, 438: 67–77. doi: 10.1016/j.optcom.2019.01.025
|
[8] |
JAYADEVA, KHEMCHANDANI R, and CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905–910. doi: 10.1109/TPAMI.2007.1068
|
[9] |
QIAN Chen, ZENG Zhixin, and WANG Hua. Study on the impacts of feature indexes on intelligent identification of communication modulation mode[C]. 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT), Changsha, China, 2021: 325–332.
|
[10] |
XIONG Wei, ZHANG Lin, MCNEIL M, et al. SYMMeTRy: Exploiting MIMO self-similarity for under-determined modulation recognition[J]. IEEE Transactions on Mobile Computing, 2022, 21(11): 4111–4124. doi: 10.1109/TMC.2021.3065891
|
[11] |
LI Shitong, QUAN Daying, WANG Xiaofeng, et al. LPI Radar signal modulation recognition with feature fusion based on time- frequency transforms[C]. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 2021: 1–6.
|
[12] |
LIU Gaohui and CAO Jiakun. Research on modulation recognition of OFDM signal based on hierarchical iterative support vector machine[C]. 2020 International Conference on Communications, Information System and Computer Engineering (CISCE), Kuala Lumpur, Malaysia, 2020: 38–44.
|
[13] |
DONG Shuli, LI Zhipeng, and ZHAO Linfeng. A modulation recognition algorithm based on cyclic spectrum and SVM classification[C]. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 2020: 2123–2127.
|
[14] |
HOSSEINZADEH H, EINALOU Z, and RAZZAZI F. A weakly supervised representation learning for modulation recognition of short duration signals[J]. Measurement, 2021, 178: 109346. doi: 10.1016/j.measurement.2021.109346
|
[15] |
FU Ying and WANG Xing. Radar signal recognition based on modified semi-supervised SVM algorithm[C]. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China, 2017: 2336−2340.
|
[16] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672−2680.
|
[17] |
RATLIFF L J, BURDEN S A, and SASTRY S S. Characterization and computation of local Nash equilibria in continuous games[C]. 2013 51st Annual Allerton Conference on Communication, Control, and Computing, Monticello, USA, 2013: 917–924.
|
[18] |
王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321–332. doi: 10.16383/j.aas.2017.y000003
WANG Kunfeng, GOU Chao, DUAN Yanjie, et al. Generative adversarial networks: The state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43(3): 321–332. doi: 10.16383/j.aas.2017.y000003
|
[19] |
RADFORD A, METZ L, and CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[C]. 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2016.
|
[20] |
ARJOVSKY M, CHINTALA S, and BOTTOU L. Wasserstein GAN[J]. arXiv: 1701.07875, 2017.
|
[21] |
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
|
[22] |
KHODJA H A and BOUDJENIBA O. Application of WGAN-GP in recommendation and Questioning the relevance of GAN-based approaches[J]. arXiv: 2204.12527, 2022.
|
[23] |
LIU Fenglin, REN Xuancheng, ZHANG Zhiyuan, et al. Rethinking skip connection with layer normalization in transformers and resNets[J]. arXiv: 2105.07205, 2021.
|
[24] |
DeepSig. DATASET: RADIOML 2018.01A (NEW)[EB/OL]. https://www.deepsig.ai/datasets, 2021.
|
[25] |
FRIEDMAN J H. Greedy function approximation: A gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189–1232. doi: 10.1214/aos/1013203451
|