Citation: | DONG Qingkuan, HE Junlin. Robustness Enhancement Method of Deep Learning Model Based on Information Bottleneck[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2197-2204. doi: 10.11999/JEIT220603 |
[1] |
SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]. The 2nd International Conference on Learning Representations (ICLR), Banff, Canada, 2014: 1–10.
|
[2] |
GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[C]. The 3rd International Conference on Learning Representations (ICLR), San Diego, USA, 2015: 1–11.
|
[3] |
MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[C]. 6th International Conference on Learning Representations (ICLR), Vancouver, Canada, 2018: 1–28.
|
[4] |
MOOSAVI-DEZFOOLI S M, FAWZI A, and FROSSARD P. DeepFool: A simple and accurate method to fool deep neural networks[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 2574–2582.
|
[5] |
CARLINI N and WAGNER D. Towards evaluating the robustness of neural networks[C]. IEEE Symposium on Security and Privacy (SP), San Jose, USA, 2017: 39–57.
|
[6] |
WONG E, RICE L, and KOLTER J Z. Fast is better than free: Revisiting adversarial training[C]. The 8th International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 2020: 1–17.
|
[7] |
ZHENG Haizhong, ZHANG Ziqi, GU Juncheng, et al. Efficient adversarial training with transferable adversarial examples[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 1178–1187.
|
[8] |
DONG Yinpeng, DENG Zhijie, PANG Tianyu, et al. Adversarial distributional training for robust deep learning[C]. The 34th International Conference on Neural Information Processing Systems (NeurIPS), Vancouver, Canada, 2020: 693.
|
[9] |
WANG Hongjun, LI Guanbin, LIU Xiaobai, et al. A Hamiltonian Monte Carlo method for probabilistic adversarial attack and learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1725–1737. doi: 10.1109/TPAMI.2020.3032061
|
[10] |
CHEN Sizhe, HE Zhengbao, SUN Chengjin, et al. Universal adversarial attack on attention and the resulting dataset DAmageNet[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 2188–2197. doi: 10.1109/TPAMI.2020.3033291
|
[11] |
FAN Jiameng and LI Wenchao. Adversarial training and provable robustness: A tale of two objectives[C/OL]. The 35th AAAI Conference on Artificial Intelligence, 2021: 7367–7376.
|
[12] |
GOKHALE T, ANIRUDH R, KAILKHURA B, et al. Attribute-guided adversarial training for robustness to natural perturbations[C/OL]. The 35th AAAI Conference on Artificial Intelligence, 2021: 7574–7582.
|
[13] |
LI Xiaoyu, ZHU Qinsheng, HUANG Yiming, et al. Research on the freezing phenomenon of quantum correlation by machine learning[J]. Computers, Materials & Continua, 2020, 65(3): 2143–2151. doi: 10.32604/cmc.2020.010865
|
[14] |
SALMAN H, SUN Mingjie, YANG G, et al. Denoised smoothing: A provable defense for pretrained classifiers[C]. The 34th International Conference on Neural Information Processing Systems (NeurIPS), Vancouver, Canada, 2020: 1841.
|
[15] |
SHAO Rui, PERERA P, YUEN P C, et al. Open-set adversarial defense with clean-adversarial mutual learning[J]. International Journal of Computer Vision, 2022, 130(4): 1070–1087. doi: 10.1007/s11263-022-01581-0
|
[16] |
MUSTAFA A, KHAN S H, HAYAT M, et al. Image super-resolution as a defense against adversarial attacks[J]. IEEE Transactions on Image Processing, 2020, 29: 1711–1724. doi: 10.1109/TIP.2019.2940533
|
[17] |
GU Shuangchi, YI Ping, ZHU Ting, et al. Detecting adversarial examples in deep neural networks using normalizing filters[C]. The 11th International Conference on Agents and Artificial Intelligence (ICAART), Prague, Czech Republic, 2019: 164–173.
|
[18] |
TISHBY N, PEREIRA F C, and BIALEK W. The information bottleneck method[EB/OL]. https://arxiv.org/pdf/physics/0004057.pdf, 2000.
|
[19] |
TISHBY N and ZASLAVSKY N. Deep learning and the information bottleneck principle[C]. IEEE Information Theory Workshop (ITW), Jerusalem, Israel, 2015: 1–5.
|
[20] |
SHWARTZ-ZIV R and TISHBY N. Opening the black box of deep neural networks via information[EB/OL]. https://arXiv.org/abs/1703.00810, 2017.
|
[21] |
KOLCHINSKY A, TRACEY B D, and WOLPERT D H. Nonlinear information bottleneck[J]. Entropy, 2019, 21(12): 1181. doi: 10.3390/e21121181
|
[22] |
ALEMI A A, FISCHER I, DILLON J V, et al. Deep variational information bottleneck[C]. The 5th International Conference on Learning Representations (ICLR), Toulon, France, 2017: 1–19.
|
[23] |
SHAMIR O, SABATO S, and TISHBY N. Learning and generalization with the information bottleneck[J]. Theoretical Computer Science, 2010, 411(29/30): 2696–2711. doi: 10.1016/j.tcs.2010.04.006
|
[24] |
STILL S and BIALEK W. How many clusters? An information-theoretic perspective[J]. Neural Computation, 2004, 16(12): 2483–2506. doi: 10.1162/0899766042321751
|
[25] |
KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. 3rd International Conference on Learning Representations (ICLR), San Diego, USA, 2015: 1–15.
|
[26] |
ZHANG Hongyang, YU Yaodong, JIAO Jiantao, et al. Theoretically principled trade-off between robustness and accuracy[C]. The 36th International Conference on Machine Learning (ICML), Long Beach, USA, 2019: 7472–7482.
|
[27] |
ZHANG Haichao and WANG Jianyu. Defense against adversarial attacks using feature scattering-based adversarial training[C]. The 33rd International Conference on Neural Information Processing Systems (NeurIPS), Vancouver, Canada, 2019: 164.
|
[28] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778.
|
[29] |
LIU Shuying and DENG Weihong. Very deep convolutional neural network based image classification using small training sample size[C]. The 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 2015: 730–734.
|