Advanced Search
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
ZHAO Wei, HUANG Lei, JIA Yanguo, SHEN Xiumin. High Energy Efficient Perfect Gaussian Integer Sequence Design Based on Second Order Cyclotomic Classes[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1952-1958. doi: 10.11999/JEIT220591
Citation: ZHAO Wei, HUANG Lei, JIA Yanguo, SHEN Xiumin. High Energy Efficient Perfect Gaussian Integer Sequence Design Based on Second Order Cyclotomic Classes[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1952-1958. doi: 10.11999/JEIT220591

High Energy Efficient Perfect Gaussian Integer Sequence Design Based on Second Order Cyclotomic Classes

doi: 10.11999/JEIT220591
Funds:  The National Natural Science Foundation of China (61601401), The Natural Science Foundation of Hebei Province (F2018203057, F2020203043), The Research Project for Science and Technology in Higher Education of Hebei (QN2021144), The Innovation Capability Improvement Plan Project of Hebei Province (22567626H)
  • Received Date: 2022-05-10
  • Rev Recd Date: 2022-06-22
  • Available Online: 2022-06-25
  • Publish Date: 2023-06-10
  • Perfect Gaussian Integer Sequence (PGIS) has been widely used in Code Division Multiplexing (CDM) systems and Orthogonal Frequency Division Multiplexing (OFDM) systems because of its good anti-interference, high transmission rate and high frequency spectrum utilization. In this paper, Gaussian Integer Sequence (GIS) is decomposed into real part sequence and imaginary part sequence, and then second-order and third-order PGIS are constructed by second-order cyclotomy of real part sequence and imaginary part sequence. A new method of extending odd length PGIS to even length PGIS is proposed. The energy efficiency of most PGIS constructed in this paper is higher than 95%, and expands the address selection space of spread spectrum communication system, which is of great significance to engineering practice.
  • loading
  • [1]
    PEI S C and CHANG Kuowei. Arbitrary length reducible and irreducible perfect Gaussian integer sequences with a pre-given Gaussian integer[C]. 2020 28th European Signal Processing Conference, Amsterdam, Netherlands, 2020: 2274–2278.
    [2]
    LIU Kai and NI Jia. Construction of Gaussian integer periodic complementary sequence set with zero correlation zone[J]. Journal of Physics:Conference Series, 2020, 1828: 012177. doi: 10.1088/1742-6596/1828/1/012177
    [3]
    刘凯, 倪佳. 基于循环差集的最佳高斯整数序列构造[J]. 电子学报, 2021, 49(8): 1474–1479. doi: 10.12263/DZXB.20200239

    LIU Kai and NI Jia. Construction of perfect Gaussian integer sequences based on cyclic difference sets[J]. Acta Electronica Sinica, 2021, 49(8): 1474–1479. doi: 10.12263/DZXB.20200239
    [4]
    CHANG C Y, LI Ying, and HIRATA J. New 64-QAM Golay complementary sequences[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2479–2485. doi: 10.1109/TIT.2010.2043871
    [5]
    LI C P, WANG S H, and WANG C L. Novel low-complexity SLM schemes for PAPR reduction in OFDM systems[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2916–2921. doi: 10.1109/TSP.2010.2043142
    [6]
    LEE C D and CHEN Y H. Fast generation of perfect Gaussian integer sequences of primitive length[C]. 2019 IEEE 4th International Conference on Signal and Image Processing, Wuxi, China, 2019: 588–591.
    [7]
    HSIA C H, LOU S J, CHANG H H, et al. Novel hybrid public/private key cryptography based on perfect Gaussian integer sequences[J]. IEEE Access, 2021, 9: 145045–145059. doi: 10.1109/ACCESS.2021.3121252
    [8]
    LIU Kai, LIU Yuandong, and CHANG Zebin. Construction of perfect gaussian integer sequences with high energy efficiency based on difference sets[C]. The 7th International Conference on Computer and Communications, Chengdu, China, 2021: 1475–1479.
    [9]
    YANG Yang, TANG Xiaohu, and ZHOU Zhengchun. Perfect Gaussian integer sequences of odd prime length[J]. IEEE Signal Processing Letters, 2012, 19(10): 615–618. doi: 10.1109/LSP.2012.2209642
    [10]
    CHANG H S, LI C P, LEE C D, et al. Perfect Gaussian integer sequences of arbitrary composite length[J]. IEEE Transactions on Information Theory, 2015, 61(7): 4107–4115. doi: 10.1109/TIT.2015.2438828
    [11]
    刘凯, 马国斌, 陈盼盼. 基于分圆类的完备高斯整数序列构造[J]. 电子学报, 2019, 47(4): 806–811. doi: 10.3969/J.ISSN.0372-2112.2019.04.006

    LIU Kai, MA Guobin, and CHEN Panpan. Construction of perfect gaussian integer sequences based on cyclotomic classes[J]. Acta Electronica Sinica, 2019, 47(4): 806–811. doi: 10.3969/J.ISSN.0372-2112.2019.04.006
    [12]
    沈灏. 组合设计理论[M]. 上海: 上海交通大学出版社, 1996: 127–159.

    SHEN Hao. Theory of Combination Designs[M]. Shanghai: Shanghai Jiao Tong University Press, 1996: 127–159.
    [13]
    HU Weiwen, WANG S H, and LI C P. Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 6074–6079. doi: 10.1109/TSP.2012.2210550
    [14]
    ZENG Fanxin, HE Xiping, XUAN Guixin, et al. Perfect Gaussian integer sequences embedding pre-given Gaussian integers[J]. IEEE Signal Processing Letters, 2019, 26(8): 1122–1126. doi: 10.1109/LSP.2019.2921228
    [15]
    STORER T. Cyclotomy and Difference Sets[M]. Chicago: Markham Publishes Company, 1967: 25–83.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(2)

    Article Metrics

    Article views (415) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return