Advanced Search
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
MA Runnian, ZHANG Enning, WANG Gang, MA Yufeng, WENG Jiang. Network Defense Decision-making Method Based on Improved Evolutionary Game Model[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1970-1980. doi: 10.11999/JEIT220585
Citation: MA Runnian, ZHANG Enning, WANG Gang, MA Yufeng, WENG Jiang. Network Defense Decision-making Method Based on Improved Evolutionary Game Model[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1970-1980. doi: 10.11999/JEIT220585

Network Defense Decision-making Method Based on Improved Evolutionary Game Model

doi: 10.11999/JEIT220585
Funds:  The National Natural Science Foundation of China (61902426)
  • Received Date: 2022-05-10
  • Rev Recd Date: 2022-07-16
  • Available Online: 2022-07-21
  • Publish Date: 2023-06-10
  • For the problem that the existing network defense decision-making method is challenging by error interference and real-time response, a novel network defense decision-making method based on an Improved Evolutionary Game Model (IEGM) is proposed. Firstly, using the classical servo system model for reference, the short-term prediction effect of the defense side on the attack strategy is quantified by differential hypothesis to accelerate the convergence of the model and improve the efficiency of defense decisions. Secondly, the mechanism of error generation in attack-defense game is analyzed, then the observational error in network defense is defined quantitatively, and the improved replication dynamics equation is proposed to strengthen the tolerance of the model to information deviation. On this basis, an improved evolutionary game model is established, and the corresponding stability analysis and mathematical proof are given to prove that the model can converge to the $ \varepsilon $-neighborhood of the Nash equilibrium solution. Theoretical analysis and simulation results show that the proposed model can overcome the influence of observation error, and the optimal pure defense strategy with deviation order of 0.01% is given. Besides, under the jamming environment, the response speed of defense decision-making can be improved by 64.06% compared with the other three decision models. The improved model and decision-making method can effectively improve the response timeliness of defense decisions and the adaptability to observation error.
  • loading
  • [1]
    ALPCAN T and BAŞAR T. Network Security: A Decision and Game-Theoretic Approach[M]. Cambridge: Cambridge University Press, 2010: 20–34.
    [2]
    刘小虎, 张恒巍, 马军强, 等. 基于攻防博弈的网络防御决策方法研究综述[J]. 网络与信息安全学报, 2022, 8(1): 1–14. doi: 10.11959/j.issn.2096-109x.2021089

    LIU Xiaohu, ZHANG Hengwei, MA Junqiang, et al. Research review of network defense decision-making methods based on attack and defense game[J]. Chinese Journal of Network and Information Security, 2022, 8(1): 1–14. doi: 10.11959/j.issn.2096-109x.2021089
    [3]
    DO C T, TRAN N H, HONG C, et al. Game theory for cyber security and privacy[J]. ACM Computing Surveys, 2018, 50(2): 30. doi: 10.1145/3057268
    [4]
    黄健明, 张恒巍, 王晋东, 等. 基于攻防演化博弈模型的防御策略选取方法[J]. 通信学报, 2017, 38(1): 168–176. doi: 10.11959/j.issn.1000-436x.2017019

    HUANG Jianming, ZHANG Hengwei, WANG Jindong, et al. Defense strategies selection based on attack-defense evolutionary game model[J]. Journal on Communications, 2017, 38(1): 168–176. doi: 10.11959/j.issn.1000-436x.2017019
    [5]
    SANDHOLM W H. Evolutionary game theory[M]. SOTOMAYOR M, PÉREZ-CASTRILLO D, and CASTIGLIONE F. Complex Social and Behavioral Systems. New York: Springer, 2020: 573–608.
    [6]
    蒋侣, 张恒巍, 王晋东. 基于多阶段Markov信号博弈的移动目标防御最优决策方法[J]. 电子学报, 2021, 49(3): 527–535. doi: 10.12263/DZXB.20191070

    JIANG Lv, ZHANG Hengwei, and WANG Jindong. A markov signaling game-theoretic approach to moving target defense strategy selection[J]. Acta Elctronica Sinica, 2021, 49(3): 527–535. doi: 10.12263/DZXB.20191070
    [7]
    SHAMMA J S and ARSLAN G. Dynamic fictitious play, dynamic gradient play, and distributed convergence to Nash equilibria[J]. IEEE Transactions on Automatic Control, 2005, 50(3): 312–327. doi: 10.1109/TAC.2005.843878
    [8]
    MASSAQUOI S G. Modeling the function of the cerebellum in scheduled linear servo control of simple horizontal planar arm movements[D]. [Ph. D. dissertation], Massachusetts Institute of Technology, 1999.
    [9]
    林旺群, 王慧, 刘家红, 等. 基于非合作动态博弈的网络安全主动防御技术研究[J]. 计算机研究与发展, 2011, 48(2): 306–316.

    LIN Wangqun, WANG Hui, LIU Jiahong, et al. Research on active defense technology in network security based on non-cooperative dynamic game theory[J]. Journal of Computer Research and Development, 2011, 48(2): 306–316.
    [10]
    WANG Kun, DU Miao, YANG Dejun, et al. Game-theory-based active defense for intrusion detection in cyber-physical embedded systems[J]. ACM Transactions on Embedded Computing Systems, 2016, 16(1): 1–21. doi: 10.1145/2886100
    [11]
    王增光, 卢昱, 李玺. 基于不完全信息博弈的军事信息网络主动防御策略选取[J]. 兵工学报, 2020, 41(3): 608–617. doi: 10.3969/j.issn.1000-1093.2020.03.022

    WANG Zengguang, LU Yu, and LI Xi. Active defense strategy selection of military information network based on incomplete information game[J]. Acta Armamentarii, 2020, 41(3): 608–617. doi: 10.3969/j.issn.1000-1093.2020.03.022
    [12]
    SUN Yan, LIN Fuhong, and ZHANG Nan. A security mechanism based on evolutionary game in fog computing[J]. Saudi Journal of Biological Sciences, 2018, 25(2): 237–241. doi: 10.1016/j.sjbs.2017.09.010
    [13]
    杨峻楠, 张红旗, 张传富. 基于随机博弈与改进WoLF-PHC的网络防御决策方法[J]. 计算机研究与发展, 2019, 56(5): 942–954. doi: 10.7544/issn1000-1239.2019.20180877

    YANG Junnan, ZHANG Hongqi, and ZHANG Chuanfu. Network defense decision-making method based on stochastic game and improved WoLF-PHC[J]. Journal of Computer Research and Development, 2019, 56(5): 942–954. doi: 10.7544/issn1000-1239.2019.20180877
    [14]
    DU Jun, JIANG Chunxiao, CHEN K C, et al. Community-structured evolutionary game for privacy protection in social networks[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(3): 574–589. doi: 10.1109/TIFS.2017.2758756
    [15]
    黄健明, 张恒巍. 基于改进复制动态演化博弈模型的最优防御策略选取[J]. 通信学报, 2018, 39(1): 170–182. doi: 10.11959/j.issn.1000-436x.2018010

    HUANG Jianming and ZHANG Hengwei. Improving replicator dynamic evolutionary game model for selecting optimal defense strategies[J]. Journal on Communications, 2018, 39(1): 170–182. doi: 10.11959/j.issn.1000-436x.2018010
    [16]
    黄健明, 张恒巍. 基于随机演化博弈模型的网络防御策略选取方法[J]. 电子学报, 2018, 46(9): 2222–2228. doi: 10.3969/j.issn.0372-2112.2018.09.025

    HUANG Jianming and ZHANG Hengwei. A Method for selecting defense strategies based on stochastic evolutionary game model[J]. Acta Electronica Sinica, 2018, 46(9): 2222–2228. doi: 10.3969/j.issn.0372-2112.2018.09.025
    [17]
    YANG Yu, CHE Bichen, ZENG Yang, et al. MAIAD: A Multistage asymmetric information attack and defense model based on evolutionary game theory[J]. Symmetry, 2019, 11(2): 215. doi: 10.3390/sym11020215
    [18]
    刘江, 张红旗, 刘艺. 基于不完全信息动态博弈的动态目标防御最优策略选取研究[J]. 电子学报, 2018, 46(1): 82–89. doi: 10.3969/j.issn.0372-2112.2018.01.012

    LIU Jiang, ZHANG Hongqi, and LIU Yi. Research on optimal selection of moving target defense policy based on dynamic game with incomplete information[J]. Acta Electronica Sinica, 2018, 46(1): 82–89. doi: 10.3969/j.issn.0372-2112.2018.01.012
    [19]
    张恩宁, 王刚, 马润年, 等. 采用双异质群体演化博弈的网络安全防御决策方法[J]. 西安交通大学学报, 2021, 55(9): 178–188. doi: 10.7652/xjtuxb202109020

    ZHANG Enning, WANG Gang, MA Runnian, et al. Network security defense decision making method based on dual heterogeneous population evolutionary game model[J]. JOurnal of Xian Jiaotong University, 2021, 55(9): 178–188. doi: 10.7652/xjtuxb202109020
    [20]
    王刚, 王志屹, 张恩宁, 等. 多阶段平台动态防御的Markov演化博弈模型及迁移策略[J]. 兵工学报, 2021, 42(8): 1690–1697. doi: 10.3969/j.issn.1000-1093.2021.08.013

    WANG Gang, WANG Zhiyi, ZHANG Enning, et al. Markov evolutionary game model and migration strategies for multi-stage platform dynamic defense[J]. Acta Armamentarii, 2021, 42(8): 1690–1697. doi: 10.3969/j.issn.1000-1093.2021.08.013
    [21]
    姜伟, 方滨兴, 田志宏, 等. 基于攻防博弈模型的网络安全测评和最优主动防御[J]. 计算机学报, 2009, 32(4): 817–827. doi: 10.3724/SP.J.1016.2009.00817

    JIANG Wei, FANG Binxing, TIAN Zhihong, et al. Evaluating network security and optimal active defense based on attack-defense game model[J]. Chinese Journal of Computers, 2009, 32(4): 817–827. doi: 10.3724/SP.J.1016.2009.00817
    [22]
    HU Hao, LIU Yuling, CHEN Chen, et al. Optimal decision making approach for cyber security defense using evolutionary game[J]. IEEE Transactions on Network and Service Management, 2020, 17(3): 1683–1700. doi: 10.1109/tnsm.2020.2995713
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (731) PDF downloads(151) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return