Advanced Search
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
HU Lei, ZHAO Hui, NAN Yi, YI Guoxing, WANG Hao, CAO Zhihui. Unmanned Aerial Vehicle Path Planning Method Based on Search Rule and Cross Entropy Optimization[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2144-2152. doi: 10.11999/JEIT220579
Citation: HU Lei, ZHAO Hui, NAN Yi, YI Guoxing, WANG Hao, CAO Zhihui. Unmanned Aerial Vehicle Path Planning Method Based on Search Rule and Cross Entropy Optimization[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2144-2152. doi: 10.11999/JEIT220579

Unmanned Aerial Vehicle Path Planning Method Based on Search Rule and Cross Entropy Optimization

doi: 10.11999/JEIT220579
  • Received Date: 2022-05-10
  • Rev Recd Date: 2022-10-26
  • Available Online: 2022-11-03
  • Publish Date: 2023-06-10
  • The Rapidly-exploring Random Tree (RRT) algorithm has some shortcomings, including low computation efficiency and non-asymptotic optimality. An Improved RRT (IRRT) algorithm based on search rules and cross entropy optimization is presented in this paper. In the path search process, according to the current node position and search rules, the search step size and search direction are adjusted to achieve efficient and rapid initial path planning. Then, the cross entropy theory is applied to optimize the initial path, so that the path has the characteristic of asymptotic optimality. The simulation results of experiment 1 show the effectiveness and convergence of the proposed method, in the second simulation experiment, the proposed algorithm is compared with several variant RRT algorithms, and the results show that the proposed algorithm can ensure the computational efficiency and make the path has the characteristic of asymptotic optimality.
  • loading
  • [1]
    Office of the Secretary of Defense (OSD). Unmanned aircraft systems roadmap 2005–2030[R]. Defense Technical Information Center, 2005.
    [2]
    MA Chunyao, FENG Zhuoqun, and ZHENG Zheng. Development of bionic UAVs cluster technology[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35(S1): 1–8. doi: 10.16356/j.1005-1120.2018.S.001
    [3]
    KHAN A, AFTAB F, and ZHANG Zhongshan. UAPM: An urgency aware packet management for disaster management using flying ad-hoc networks[J]. China Communications, 2019, 16(11): 167–182. doi: 10.23919/JCC.2019.11.014
    [4]
    PERSSON S M and SHARF I. Sampling-based A* algorithm for robot path-planning[J]. The International Journal of Robotics Research, 2014, 33(13): 1683–1708. doi: 10.1177/0278364914547786
    [5]
    SINGH Y, SHARMA S, SUTTON R, et al. A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents[J]. Ocean Engineering, 2018, 169: 187–201. doi: 10.1016/j.oceaneng.2018.09.016
    [6]
    HUANG Hanqiao, ZHANG Wei, ZHAO Xin, et al. Study on 4D path planning and tracking controlling of UCAV in multiple constraints dynamic condition[C]. The 33rd Chinese Control Conference, Nanjing, China, 2014: 31–36.
    [7]
    AOUDE G S, LUDERS B D, JOSEPH J M, et al. Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns[J]. Autonomous Robots, 2013, 35(1): 51–76. doi: 10.1007/s10514-013-9334-3
    [8]
    KOTHARI M and POSTLETHWAITE I. A probabilistically robust path planning algorithm for UAVs using rapidly-exploring random trees[J]. Journal of Intelligent & Robotic Systems, 2013, 71(2): 231–253. doi: 10.1007/s10846-012-9776-4
    [9]
    PEHLIVANOGLU Y V. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV[J]. Aerospace Science and Technology, 2012, 16(1): 47–55. doi: 10.1016/j.ast.2011.02.006
    [10]
    刘冰雁, 叶雄兵, 王新波, 等. 基于改进人工势场的无人地面车辆路径规避算法[J]. 中国惯性技术学报, 2020, 28(6): 769–777. doi: 10.13695/j.cnki.12-1222/o3.2020.06.011

    LIU Bingyan, YE Xiongbing, WANG Xinbo, et al. Path avoidance algorithm of unmanned ground vehicle based on improved artificial potential field[J]. Journal of Chinese Inertial Technology, 2020, 28(6): 769–777. doi: 10.13695/j.cnki.12-1222/o3.2020.06.011
    [11]
    练青坡, 王宏健, 袁建亚, 等. 基于粒子群优化算法的USV集群协同避碰方法[J]. 系统工程与电子技术, 2019, 41(9): 2034–2040. doi: 10.3969/j.issn.1001-506X.2019.09.16

    LIAN Qingpo, WANG Hongjian, YUAN Jianya, et al. USV cluster collision avoidance based on particle swarm optimization algorithm[J]. Systems Engineering and Electronics, 2019, 41(9): 2034–2040. doi: 10.3969/j.issn.1001-506X.2019.09.16
    [12]
    CONTRERAS-CRUZ M A, AYALA-RAMIREZ V, and HERNANDEZ-BELMONTE U H. Mobile robot path planning using artificial bee colony and evolutionary programming[J]. Applied Soft Computing, 2015, 30: 319–328. doi: 10.1016/j.asoc.2015.01.067
    [13]
    LAVALLE S M and KUFFNER JR J J. Randomized kinodynamic planning[J]. The International Journal of Robotics Research, 1999, 20(5): 378–400. doi: 10.1177/02783640122067453
    [14]
    KUFFNER J J and LAVALLE S M. RRT-connect: An efficient approach to single-query path planning[C]. 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings, San Francisco, USA, 2000: 995–1001.
    [15]
    王乐乐, 眭泽智, 蒲志强, 等. 一种改进RRT的多机器人编队路径规划算法[J]. 电子学报, 2020, 48(11): 2138–2145. doi: 10.3969/j.issn.0372-2112.2020.11.007

    WANG Lele, SUI Zezhi, PU Zhiqiang, et al. An improved RRT algorithm for multi-robot formation path planning[J]. Acta Electronica Sinica, 2020, 48(11): 2138–2145. doi: 10.3969/j.issn.0372-2112.2020.11.007
    [16]
    李洋, 徐达, 周诚. 基于自适应步长RRT的双机器人协同路径规划[J]. 农业机械学报, 2019, 50(3): 358–367. doi: 10.6041/j.issn.1000-1298.2019.03.041

    LI Yang, XU Da, and ZHOU Cheng. Cooperation path planning of dual-robot based on self-adaptive stepsize RRT[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 358–367. doi: 10.6041/j.issn.1000-1298.2019.03.041
    [17]
    JEONG I B, LEE S J, and KIM J H. Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution and convergence rate[J]. Expert Systems with Applications, 2019, 123: 82–90. doi: 10.1016/j.eswa.2019.01.032
    [18]
    HU Lei, YI Guoxing, HUANG Chao, et al. Research on dynamic weapon target assignment based on cross-entropy[J]. Mathematical Problems in Engineering, 2020, 2020: 8618065. doi: 10.1155/2020/8618065
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (492) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return