Advanced Search
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHOU Yang, WU Dewei, SONG Yi, DAI Chuanjin. Biological Inspired Goal-oriented Navigation Model Based on Spatial Exploration and Construction of Cognitive Map[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1817-1823. doi: 10.11999/JEIT220578
Citation: ZHOU Yang, WU Dewei, SONG Yi, DAI Chuanjin. Biological Inspired Goal-oriented Navigation Model Based on Spatial Exploration and Construction of Cognitive Map[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1817-1823. doi: 10.11999/JEIT220578

Biological Inspired Goal-oriented Navigation Model Based on Spatial Exploration and Construction of Cognitive Map

doi: 10.11999/JEIT220578
Funds:  The National Natural Science Foundation of China (61973314)
  • Received Date: 2022-05-10
  • Rev Recd Date: 2022-08-21
  • Available Online: 2022-08-30
  • Publish Date: 2023-05-10
  • To realize the generation of the navigation knowledge and the running control driven by goal for the intelligent and autonomous vehicle, a biological inspired Goal-Oriented (GO) navigation model based on spatial exploration and construction of cognitive map is discussed in this paper. This model is made up of three parts, including spatial exploration, construction of cognitive map and control of goal-oriented navigation. During spatial exploration, the model from Grid Cells (GCs) to Place Cells (PCs) and visual place cells’ model are fused to represent current state, and Q-learning algorithm is used to build and update the state-action. As a result, the goal-oriented navigation knowledge is learned. Then, during the construction of cognitive map, the gravity center estimation principle is used to deal with the obtained spatial exploration knowledge, which can produce the direction information corresponding to the different place cells’ state. Finally, during goal-oriented navigation process, the vehicle controls its running direction based on the cognitive map. Therefore, the goal-oriented navigation can be realized. Simulation validates that this model is available. The vehicle can construct cognitive map after sufficient spatial exploration and realizes goal-oriented navigation based on the cognitive map. Besides, the vehicle can effectively avoid obstacles during running.
  • loading
  • [1]
    O’KEEFE J and DOSTROVSKY J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat[J]. Brain Research, 1971, 34(1): 171–175. doi: 10.1016/0006-8993(71)90358-1
    [2]
    PASSINGHAM R E. The hippocampus as a cognitive map[J]. Neuroscience, 1979, 4(6): 863. doi: 10.1016/0306-4522(79)90015-0
    [3]
    赵菁, 赵东花, 王晨光, 等. 基于场景识别的惯性基类脑导航方法[J]. 导航与控制, 2020, 19(4): 119–125. doi: 10.3969/j.issn.1674-5558.2020.h4.014

    ZHAO Jing, ZHAO Donghua, WANG Chenguang, et al. Inertial-based brain-like navigation strategy based on scene recognition[J]. Navigation and Control, 2020, 19(4): 119–125. doi: 10.3969/j.issn.1674-5558.2020.h4.014
    [4]
    丛明, 邹强, 刘冬, 等. 定位细胞认知机理启发的机器人导航研究综述[J]. 机械工程学报, 2019, 55(23): 1–12. doi: 10.3901/JME.2019.23.001

    CONG Ming, ZOU Qiang, LIU Dong, et al. Review of robot navigation inspired by the localization cells’ cognitive mechanism[J]. Journal of Mechanical Engineering, 2019, 55(23): 1–12. doi: 10.3901/JME.2019.23.001
    [5]
    TEJERA G, LLOFRIU M, BARRERA A, et al. Bio-inspired robotics: A spatial cognition model integrating place cells, grid cells and head direction cells[J]. Journal of Intelligent & Robotic Systems, 2018, 91(1): 85–99. doi: 10.1007/s10846-018-0852-2
    [6]
    MOSER E I, KROPFF E, and MOSER M B. Place cells, grid cells, and the brain’s spatial representation system[J]. Annual Review of Neuroscience, 2008, 31: 69–89. doi: 10.1146/annurev.neuro.31.061307.090723
    [7]
    杨闯, 刘建业, 熊智, 等. 由感知到动作决策一体化的类脑导航技术研究现状与未来发展[J]. 航空学报, 2020, 41(1): 023280. doi: 10.7527/S1000-6893.2019.23280

    YANG Chuang, LIU Jianye, XIONG Zhi, et al. Brain-inspired navigation technology integrating perception and action decision: A review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023280. doi: 10.7527/S1000-6893.2019.23280
    [8]
    李伟龙, 吴德伟, 卢虎, 等. 基于多尺度空间表征的生物启发目标指引导航模型[J]. 电子与信息学报, 2017, 39(6): 1363–1370. doi: 10.11999/JEIT160892

    LI Weilong, WU Dewei, LU Hu, et al. Bio-inspired goal-directed navigation model based on multi-scale spatial representation[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1363–1370. doi: 10.11999/JEIT160892
    [9]
    HU Lingfang, HAO Kuangrong, CAI Xin, et al. A spatial cognitive cells inspired goal-directed navigation model[C]. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 2019: 211–215.
    [10]
    STRÖSSLIN T, SHEYNIKHOVICH D, CHAVARRIAGA R, et al. Robust self-localisation and navigation based on hippocampal place cells[J]. Neural Networks, 2005, 18(9): 1125–1140. doi: 10.1016/j.neunet.2005.08.012
    [11]
    SHEYNIKHOVICH D, CHAVARRIAGA R, STRÖSSLIN T, et al. Spatial representation and navigation in a bio-inspired robot[M]. WERMTER S, PALM G, and ELSHAW M. Biomimetic Neural Learning for Intelligent Robots. Berlin: Springer, 2005: 245–264.
    [12]
    SHEYNIKHOVICH D and ARLEO A. A reinforcement learning approach to model interactions between landmarks and geometric cues during spatial learning[J]. Brain Research, 2010, 1365: 35–47. doi: 10.1016/j.brainres.2010.09.091
    [13]
    SHEYNIKHOVICH D, DOLLÉ L, CHAVARRIAGA R, et al. Minimal model of strategy switching in the plus-maze navigation task[C]. The 11th International Conference on Simulation of Adaptive Behavior on From Animals to Animats 11, Clos Lucé, France, 2010: 390–401.
    [14]
    HASSELMO M E. A model of prefrontal cortical mechanisms for goal-directed behavior[J]. Journal of Cognitive Neuroscience, 2005, 17(7): 1115–1129. doi: 10.1162/0898929054475190
    [15]
    MARTINET L E, SHEYNIKHOVICH D, BENCHENANE K, et al. Spatial learning and action planning in a prefrontal cortical network model[J]. PLoS Computational Biology, 2011, 7(5): e1002045. doi: 10.1371/journal.pcbi.1002045
    [16]
    LLOFRIU M, TEJERA G, and CONTRERAS M. Goal-oriented robot navigation learning using a multi-scale space representation[J]. Neural Networks, 2015, 72: 62–74. doi: 10.1016/j.neunet.2015.09.006
    [17]
    方略, 何洪军. 基于鼠脑海马位置细胞与Q学习面向目标导航[J]. 生物信息学, 2019, 17(1): 31–38. doi: 10.12113/j.issn.1672-5565.201809001

    FANG Lue and HE Hongjun. Goal oriented navigation based on place cells of rat’s brain hippocampus and Q-learning[J]. Chinese Journal of Bioinformatics, 2019, 17(1): 31–38. doi: 10.12113/j.issn.1672-5565.201809001
    [18]
    ZHU Qing, WANG Rubin, and WANG Ziyin. A cognitive map model based on spatial and goal-oriented mental exploration in rodents[J]. Behavioural Brain Research, 2013, 256: 128–139. doi: 10.1016/j.bbr.2013.05.050
    [19]
    周阳, 吴德伟. 基于位置细胞的空间表征及位置估计模型[J]. 上海交通大学学报, 2018, 52(4): 488–494. doi: 10.16183/j.cnki.jsjtu.2018.04.015

    ZHOU Yang and WU Dewei. Spatial representation and location estimation model based on place cells[J]. Journal of Shanghai Jiaotong University, 2018, 52(4): 488–494. doi: 10.16183/j.cnki.jsjtu.2018.04.015
    [20]
    ZHOU Yang and WU Dewei. Grid-to-place cells model based on radial basis function network[J]. Electronics Letters, 2017, 53(3): 200–201. doi: 10.1049/el.2016.1750
    [21]
    ZHOU Yang and WU Dewei. A model of generating visual place cells based on environment perception and similar measure[J]. Computational Intelligence and Neuroscience, 2016, 2016: 3253678. doi: 10.1155/2016/3253678
    [22]
    ARLEO A and GERSTNER W. Spatial cognition and neuro-mimetic navigation: A model of hippocampal place cell activity[J]. Biological Cybernetics, 2000, 83(3): 287–299. doi: 10.1007/s004220000171
    [23]
    赵辰豪, 吴德伟, 何晶, 等. 基于改进Q学习算法的导航认知图构建[J]. 空军工程大学学报:自然科学版, 2020, 21(2): 53–60. doi: 10.3969/j.issn.1009-3516.2020.02.008

    ZHAO Chenhao, WU Dewei, HE Jing, et al. Navigation cognitive map construction based on improved Q-learning algorithm[J]. Journal of Air Force Engineering University:Natural Science Edition, 2020, 21(2): 53–60. doi: 10.3969/j.issn.1009-3516.2020.02.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (444) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return