Citation: | ZHOU Yang, WU Dewei, SONG Yi, DAI Chuanjin. Biological Inspired Goal-oriented Navigation Model Based on Spatial Exploration and Construction of Cognitive Map[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1817-1823. doi: 10.11999/JEIT220578 |
[1] |
O’KEEFE J and DOSTROVSKY J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat[J]. Brain Research, 1971, 34(1): 171–175. doi: 10.1016/0006-8993(71)90358-1
|
[2] |
PASSINGHAM R E. The hippocampus as a cognitive map[J]. Neuroscience, 1979, 4(6): 863. doi: 10.1016/0306-4522(79)90015-0
|
[3] |
赵菁, 赵东花, 王晨光, 等. 基于场景识别的惯性基类脑导航方法[J]. 导航与控制, 2020, 19(4): 119–125. doi: 10.3969/j.issn.1674-5558.2020.h4.014
ZHAO Jing, ZHAO Donghua, WANG Chenguang, et al. Inertial-based brain-like navigation strategy based on scene recognition[J]. Navigation and Control, 2020, 19(4): 119–125. doi: 10.3969/j.issn.1674-5558.2020.h4.014
|
[4] |
丛明, 邹强, 刘冬, 等. 定位细胞认知机理启发的机器人导航研究综述[J]. 机械工程学报, 2019, 55(23): 1–12. doi: 10.3901/JME.2019.23.001
CONG Ming, ZOU Qiang, LIU Dong, et al. Review of robot navigation inspired by the localization cells’ cognitive mechanism[J]. Journal of Mechanical Engineering, 2019, 55(23): 1–12. doi: 10.3901/JME.2019.23.001
|
[5] |
TEJERA G, LLOFRIU M, BARRERA A, et al. Bio-inspired robotics: A spatial cognition model integrating place cells, grid cells and head direction cells[J]. Journal of Intelligent & Robotic Systems, 2018, 91(1): 85–99. doi: 10.1007/s10846-018-0852-2
|
[6] |
MOSER E I, KROPFF E, and MOSER M B. Place cells, grid cells, and the brain’s spatial representation system[J]. Annual Review of Neuroscience, 2008, 31: 69–89. doi: 10.1146/annurev.neuro.31.061307.090723
|
[7] |
杨闯, 刘建业, 熊智, 等. 由感知到动作决策一体化的类脑导航技术研究现状与未来发展[J]. 航空学报, 2020, 41(1): 023280. doi: 10.7527/S1000-6893.2019.23280
YANG Chuang, LIU Jianye, XIONG Zhi, et al. Brain-inspired navigation technology integrating perception and action decision: A review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023280. doi: 10.7527/S1000-6893.2019.23280
|
[8] |
李伟龙, 吴德伟, 卢虎, 等. 基于多尺度空间表征的生物启发目标指引导航模型[J]. 电子与信息学报, 2017, 39(6): 1363–1370. doi: 10.11999/JEIT160892
LI Weilong, WU Dewei, LU Hu, et al. Bio-inspired goal-directed navigation model based on multi-scale spatial representation[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1363–1370. doi: 10.11999/JEIT160892
|
[9] |
HU Lingfang, HAO Kuangrong, CAI Xin, et al. A spatial cognitive cells inspired goal-directed navigation model[C]. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 2019: 211–215.
|
[10] |
STRÖSSLIN T, SHEYNIKHOVICH D, CHAVARRIAGA R, et al. Robust self-localisation and navigation based on hippocampal place cells[J]. Neural Networks, 2005, 18(9): 1125–1140. doi: 10.1016/j.neunet.2005.08.012
|
[11] |
SHEYNIKHOVICH D, CHAVARRIAGA R, STRÖSSLIN T, et al. Spatial representation and navigation in a bio-inspired robot[M]. WERMTER S, PALM G, and ELSHAW M. Biomimetic Neural Learning for Intelligent Robots. Berlin: Springer, 2005: 245–264.
|
[12] |
SHEYNIKHOVICH D and ARLEO A. A reinforcement learning approach to model interactions between landmarks and geometric cues during spatial learning[J]. Brain Research, 2010, 1365: 35–47. doi: 10.1016/j.brainres.2010.09.091
|
[13] |
SHEYNIKHOVICH D, DOLLÉ L, CHAVARRIAGA R, et al. Minimal model of strategy switching in the plus-maze navigation task[C]. The 11th International Conference on Simulation of Adaptive Behavior on From Animals to Animats 11, Clos Lucé, France, 2010: 390–401.
|
[14] |
HASSELMO M E. A model of prefrontal cortical mechanisms for goal-directed behavior[J]. Journal of Cognitive Neuroscience, 2005, 17(7): 1115–1129. doi: 10.1162/0898929054475190
|
[15] |
MARTINET L E, SHEYNIKHOVICH D, BENCHENANE K, et al. Spatial learning and action planning in a prefrontal cortical network model[J]. PLoS Computational Biology, 2011, 7(5): e1002045. doi: 10.1371/journal.pcbi.1002045
|
[16] |
LLOFRIU M, TEJERA G, and CONTRERAS M. Goal-oriented robot navigation learning using a multi-scale space representation[J]. Neural Networks, 2015, 72: 62–74. doi: 10.1016/j.neunet.2015.09.006
|
[17] |
方略, 何洪军. 基于鼠脑海马位置细胞与Q学习面向目标导航[J]. 生物信息学, 2019, 17(1): 31–38. doi: 10.12113/j.issn.1672-5565.201809001
FANG Lue and HE Hongjun. Goal oriented navigation based on place cells of rat’s brain hippocampus and Q-learning[J]. Chinese Journal of Bioinformatics, 2019, 17(1): 31–38. doi: 10.12113/j.issn.1672-5565.201809001
|
[18] |
ZHU Qing, WANG Rubin, and WANG Ziyin. A cognitive map model based on spatial and goal-oriented mental exploration in rodents[J]. Behavioural Brain Research, 2013, 256: 128–139. doi: 10.1016/j.bbr.2013.05.050
|
[19] |
周阳, 吴德伟. 基于位置细胞的空间表征及位置估计模型[J]. 上海交通大学学报, 2018, 52(4): 488–494. doi: 10.16183/j.cnki.jsjtu.2018.04.015
ZHOU Yang and WU Dewei. Spatial representation and location estimation model based on place cells[J]. Journal of Shanghai Jiaotong University, 2018, 52(4): 488–494. doi: 10.16183/j.cnki.jsjtu.2018.04.015
|
[20] |
ZHOU Yang and WU Dewei. Grid-to-place cells model based on radial basis function network[J]. Electronics Letters, 2017, 53(3): 200–201. doi: 10.1049/el.2016.1750
|
[21] |
ZHOU Yang and WU Dewei. A model of generating visual place cells based on environment perception and similar measure[J]. Computational Intelligence and Neuroscience, 2016, 2016: 3253678. doi: 10.1155/2016/3253678
|
[22] |
ARLEO A and GERSTNER W. Spatial cognition and neuro-mimetic navigation: A model of hippocampal place cell activity[J]. Biological Cybernetics, 2000, 83(3): 287–299. doi: 10.1007/s004220000171
|
[23] |
赵辰豪, 吴德伟, 何晶, 等. 基于改进Q学习算法的导航认知图构建[J]. 空军工程大学学报:自然科学版, 2020, 21(2): 53–60. doi: 10.3969/j.issn.1009-3516.2020.02.008
ZHAO Chenhao, WU Dewei, HE Jing, et al. Navigation cognitive map construction based on improved Q-learning algorithm[J]. Journal of Air Force Engineering University:Natural Science Edition, 2020, 21(2): 53–60. doi: 10.3969/j.issn.1009-3516.2020.02.008
|