Citation: | ZHANG Shunxiang, WU Houyue, ZHU Guangli, Xu Xin, SU Mingxing. Character-level Adversarial Samples Generation Approach for Chinese Text Classification[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2226-2235. doi: 10.11999/JEIT220563 |
[1] |
PAPERNOT N, MCDANIEL P, SWAMI A, et al. Crafting adversarial input sequences for recurrent neural networks[C]. MILCOM 2016 - 2016 IEEE Military Communications Conference, Baltimore, USA, 2016: 49–54.
|
[2] |
WANG Boxin, PEI Hengzhi, PAN Boyuan, et al. T3: Tree-autoencoder constrained adversarial text generation for targeted attack[C/OL]. The 2020 Conference on Empirical Methods in Natural Language Processing, 2020: 6134–6150.
|
[3] |
LE T, WANG Suhang, and LEE D. MALCOM: Generating malicious comments to attack neural fake news detection models[C]. 2020 IEEE International Conference on Data Mining, Sorrento, Italy, 2020: 282–291.
|
[4] |
MOZES M, STENETORP P, KLEINBERG B, et al. Frequency-guided word substitutions for detecting textual adversarial examples[C/OL]. The 16th Conference of the European Chapter of the Association for Computational Linguistics, 2021: 171–186.
|
[5] |
TAN S, JOTY S, VARSHNEY L, et al. Mind your Inflections! Improving NLP for non-standard Englishes with Base-Inflection encoding[C/OL]. The 2020 Conference on Empirical Methods in Natural Language Processing, 2020: 5647–5663.
|
[6] |
潘文雯, 王新宇, 宋明黎, 等. 对抗样本生成技术综述[J]. 软件学报, 2020, 31(1): 67–81. doi: 10.13328/j.cnki.jos.005884
PAN Wenwen, WANG Xinyu, SONG Mingli, et al. Survey on generating adversarial examples[J]. Journal of Software, 2020, 31(1): 67–81. doi: 10.13328/j.cnki.jos.005884
|
[7] |
MILLER D, NICHOLSON L, DAYOUB F, et al. Dropout sampling for robust object detection in open-set conditions[C]. 2018 IEEE International Conference on Robotics and Automation, Brisbane, Australia, 2018: 3243–3249.
|
[8] |
王文琦, 汪润, 王丽娜, 等. 面向中文文本倾向性分类的对抗样本生成方法[J]. 软件学报, 2019, 30(8): 2415–2427. doi: 10.13328/j.cnki.jos.005765
WANG Wenqi, WANG Run, WANG Li’na, et al. Adversarial examples generation approach for tendency classification on Chinese texts[J]. Journal of Software, 2019, 30(8): 2415–2427. doi: 10.13328/j.cnki.jos.005765
|
[9] |
仝鑫, 王罗娜, 王润正, 等. 面向中文文本分类的词级对抗样本生成方法[J]. 信息网络安全, 2020, 20(9): 12–16. doi: 10.3969/j.issn.1671-1122.2020.09.003
TONG Xin, WANG Luona, WANG Runzheng, et al. A generation method of word-level adversarial samples for Chinese text classiifcation[J]. Netinfo Security, 2020, 20(9): 12–16. doi: 10.3969/j.issn.1671-1122.2020.09.003
|
[10] |
BLOHM M, JAGFELD G, SOOD E, et al. Comparing attention-based convolutional and recurrent neural networks: Success and limitations in machine reading comprehension[C]. The 22nd Conference on Computational Natural Language Learning, Brussels, Belgium, 2018: 108–118.
|
[11] |
NIU Tong and BANSAL M. Adversarial over-sensitivity and over-stability strategies for dialogue models[C]. The 22nd Conference on Computational Natural Language Learning, Brussels, Belgium, 2018: 486–496.
|
[12] |
EBRAHIMI J, LOWD D, and DOU Dejing. On adversarial examples for character-level neural machine translation[C]. The 27th International Conference on Computational Linguistics, Santa Fe, USA, 2018: 653–663.
|
[13] |
GAO Ji, LANCHANTIN J, SOFFA M L, et al. Black-box generation of adversarial text sequences to evade deep learning classifiers[C]. 2018 IEEE Security and Privacy Workshops, San Francisco, USA, 2018: 50–56.
|
[14] |
GOODMAN D, LV Zhonghou, and WANG Minghua. FastWordBug: A fast method to generate adversarial text against NLP applications[J]. arXiv preprint arXiv: 2002.00760, 2020.
|
[15] |
EBRAHIMI J, RAO Anyi, LOWD D, et al. HotFlip: White-box adversarial examples for text classification[C]. The 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 2018: 31–36.
|
[16] |
SONG Liwei, YU Xinwei, PENG H T, et al. Universal adversarial attacks with natural triggers for text classification[C/OL]. The 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021: 3724–3733.
|
[17] |
LI Dianqi, ZHANG Yizhe, PENG Hao, et al. Contextualized perturbation for textual adversarial attack[C/OL]. The 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021: 5053–5069.
|
[18] |
TAN S, JOTY S, KAN M Y, et al. It's Morphin' time! Combating linguistic discrimination with inflectional perturbations[C/OL]. The 58th Annual Meeting of the Association for Computational Linguistics, 2020: 2920–2935.
|
[19] |
LI Linyang, MA Ruotian, GUO Qipeng, et al. BERT-ATTACK: Adversarial attack against BERT using BERT[C/OL]. The 2020 Conference on Empirical Methods in Natural Language Processing, 2020: 6193–6202.
|
[20] |
ZANG Yuan, QI Fanchao, YANG Chenghao, et al. Word-level textual adversarial attacking as combinatorial optimization[C/OL]. The 58th Annual Meeting of the Association for Computational Linguistics, 2020: 6066–6080.
|
[21] |
CHENG Minhao, YI Jinfeng, CHEN Pinyu, et al. Seq2Sick: Evaluating the robustness of sequence-to-sequence models with adversarial examples[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 3601–3608.
|
[22] |
JIA R and LIANG P. Adversarial examples for evaluating reading comprehension systems[C]. The 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017: 2021–2031.
|
[23] |
MINERVINI P and RIEDEL S. Adversarially regularising neural NLI models to integrate logical background knowledge[C]. The 22nd Conference on Computational Natural Language Learning, Brussels, Belgium, 2018: 65–74.
|
[24] |
WANG Yicheng and BANSAL M. Robust machine comprehension models via adversarial training[C]. The 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, USA, 2018: 575–581.
|
[25] |
RIBEIRO M T, SINGH S, and GUESTRIN C. Semantically equivalent adversarial rules for debugging NLP models[C]. The 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 2018: 856–865.
|
[26] |
IYYER M, WIETING J, GIMPEL K, et al. Adversarial example generation with syntactically controlled paraphrase networks[C]. The 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, USA, 2018: 1875–1885.
|
[27] |
HAN Wenjuan, ZHANG Liwen, JIANG Yong, et al. Adversarial attack and defense of structured prediction models[C/OL]. The 2020 Conference on Empirical Methods in Natural Language Processing, 2020: 2327–2338.
|
[28] |
WANG Tianlu, WANG Xuezhi, QIN Yao, et al. CAT-Gen: Improving robustness in NLP models via controlled adversarial text generation[C/OL]. The 2020 Conference on Empirical Methods in Natural Language Processing, 2020: 5141–5146.
|
[29] |
魏星, 王小辉, 魏亮, 等. 基于规范科技术语数据库的科技术语多音字研究与读音推荐[J]. 中国科技术语, 2020, 22(6): 25–29. doi: 10.3969/j.issn.1673-8578.2020.06.005
WEI Xing, WANG Xiaohui, WEI Liang, et al. Pronunciation recommendations on polyphonic characters in terms based on the database of standardized terms[J]. China Terminology, 2020, 22(6): 25–29. doi: 10.3969/j.issn.1673-8578.2020.06.005
|
[30] |
KIRITCHENKO S, ZHU Xiaodan, CHERRY C, et al. NRC-Canada-2014: Detecting aspects and sentiment in customer reviews[C]. The 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin, Ireland, 2014: 437–442.
|
[31] |
TANG Duyu, QIN Bing, FENG Xiaocheng, et al. Effective LSTMs for target-dependent sentiment classification[C]. COLING 2016, the 26th International Conference on Computational Linguistics, Osaka, Japan, 2016: 3298–3307.
|
[32] |
TANG Duyu, QIN Bing, and LIU Ting. Aspect level sentiment classification with deep memory network[C]. The 2016 Conference on Empirical Methods in Natural Language Processing, Austin, USA, 2016: 214–224.
|
[33] |
MA Dehong, LI Sujian, ZHANG Xiaodong, et al. Interactive attention networks for aspect-level sentiment classification[C]. The 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 4068–4074.
|
[34] |
HUANG Binxuan, OU Yanglan, and CARLEY K M. Aspect level sentiment classification with attention-over-attention neural networks[C]. The 11th International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation, Washington, USA, 2018: 197–206.
|
[35] |
SONG Youwei, WANG Jiahai, JIANG Tao, et al. Targeted sentiment classification with attentional encoder network[C]. The 28th International Conference on Artificial Neural Networks, Munich, Germany, 2019: 93–103.
|
[36] |
HE Ruidan, LEE W S, NG H T, et al. Effective attention modeling for aspect-level sentiment classification[C]. The 27th International Conference on Computational Linguistics, Santa Fe, USA, 2018: 1121–1131.
|
[37] |
HUANG Binxuan and CARLEY K M. Syntax-aware aspect level sentiment classification with graph attention networks[C]. The 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 2019: 5469–5477.
|
[38] |
ZHANG Chen, LI Qiuchi, and SONG Dawei. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]. The 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 2019: 4568–4578.
|
[39] |
WANG Yuanchao, LI Mingtao, PAN Zhichen, et al. Pulsar candidate classification with deep convolutional neural networks[J]. Research in Astronomy and Astrophysics, 2019, 19(9): 133. doi: 10.1088/1674-4527/19/9/133
|
[40] |
唐恒亮, 尹棋正, 常亮亮, 等. 基于混合图神经网络的方面级情感分类[J]. 计算机工程与应用, 2023, 59(4): 175–182. doi: 10.3778/j.ssn.1002-8331.2109-0172
TANG Hengliang, YIN Qizheng, CHANG Liangliang, et al. Aspect-level sentiment classification based on mixed graph neural network[J]. Computer Engineering and Applications, 2023, 59(4): 175–182. doi: 10.3778/j.ssn.1002-8331.2109-0172
|
[41] |
KUSNER M J, SUN Yu, KOLKIN N I, et al. From word embeddings to document distances[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 957–966.
|