Advanced Search
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
YUN Shuangxing, XU Hongwei, FU Ning, QIAO Liyan. Sub-Nyquist Sampling of Pulse Streams Based on the Real Part of Fourier Coefficients[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2153-2161. doi: 10.11999/JEIT220558
Citation: YUN Shuangxing, XU Hongwei, FU Ning, QIAO Liyan. Sub-Nyquist Sampling of Pulse Streams Based on the Real Part of Fourier Coefficients[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2153-2161. doi: 10.11999/JEIT220558

Sub-Nyquist Sampling of Pulse Streams Based on the Real Part of Fourier Coefficients

doi: 10.11999/JEIT220558
Funds:  The National Natural Science Foundation of China (62071149, 61671177), The Open Foundation of Hongque Innovation Center (HQ202103003), Fundamental Research Funds for the Central Universities
  • Received Date: 2022-05-07
  • Rev Recd Date: 2022-10-20
  • Available Online: 2022-10-26
  • Publish Date: 2023-06-10
  • The Finite Rate of Innovation (FRI) theory can realize the sub-Nyquist sampling of pulse streams signal by a sampling rate much lower than its Nyquist frequency. Most classical FRI reconstruction algorithms operate on the basis of Fourier coefficients, and there is a lot of singular value decomposition of complex matrices, which reduces the efficiency of the algorithm. To solve this problem, an FRI sampling and reconstruction method based on the real part of Fourier coefficients is proposed in this paper. Firstly, the discrete cosine transform is used to obtain the real part of Fourier coefficients information from the low-speed sampling value of the pulse flow signal, and the Toeplitz matrix of the real part is used in the reconstruction algorithm to improve the efficiency of the Singular Value Decomposition (SVD). Secondly, in order to improve the robustness of the classical annihilating filter algorithm, a covariance matrix decomposition algorithm and a null space searching algorithm are proposed from the rotation invariant feature and the null space property of the real covariance matrix. The two methods are based on the discrete cosine transform to estimate characteristic parameters of the pulse stream signal. For the conjugate root problem, a new method of deconjugation based on the alternating direction multiplier is proposed in this paper. The simulation results show that using the real part information of Fourier coefficients can greatly improve the efficiency of the algorithm and ensure the accuracy of parameter estimation when the rate of innovation of the signal is high.
  • loading
  • [1]
    UNSER M. Sampling-50 years after Shannon[J]. Proceedings of the IEEE, 2000, 88(4): 569–587. doi: 10.1109/5.843002
    [2]
    陈鹏, 孟晨, 王成. 基于高度冗余Gabor框架的欠Nyquist采样系统子空间探测[J]. 电子与信息学报, 2015, 37(12): 2877–2884. doi: 10.11999/JEIT150327

    CHEN Peng, MENG Chen, and WANG Cheng. Subspace detection of sub-Nyquist sampling system based on highly redundant Gabor frames[J]. Journal of Electronics &Information Technology, 2015, 37(12): 2877–2884. doi: 10.11999/JEIT150327
    [3]
    张素玲, 席峰, 陈胜垚, 等. 基于正交压缩采样系统的脉冲雷达回波信号实时重构方法[J]. 电子与信息学报, 2016, 38(5): 1064–1071. doi: 10.11999/JEIT150767

    ZHANG Suling, XI Feng, CHEN Shengyao, et al. A real-time reconstruction scheme of pulsed radar echoes with quadrature compressive sampling[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1064–1071. doi: 10.11999/JEIT150767
    [4]
    QI Peihan, LI Zan, LI Hongbin, et al. Blind sub-Nyquist spectrum sensing with modulated wideband converter[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4278–4288. doi: 10.1109/TVT.2018.2794779
    [5]
    TUR R, ELDAR Y C, and FRIEDMAN Z. Innovation rate sampling of pulse streams with application to ultrasound imaging[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1827–1842. doi: 10.1109/TSP.2011.2105480
    [6]
    TARAR M O and KHALID Z. Reconstruction of finite rate of innovation spherical signals in the presence of noise using deep learning architecture[C]. 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, 2021: 1487–1491.
    [7]
    HUANG Guoxing, YANG Zeming, LU Weidang, et al. Sub-Nyquist sampling of ECG signals based on the extension of variable pulsewidth model[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 6501114. doi: 10.1109/TIM.2022.3144213
    [8]
    DA COSTA M F and CHI Yuejie. Compressed super-resolution of positive sources[J]. IEEE Signal Processing Letters, 2020, 28: 56–60. doi: 10.1109/LSP.2020.3045343
    [9]
    HUANG Guoxing, CHEN Linlin, LU Weidang, et al. FRI sampling of parametric signals with non-ideal Sinc kernel[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(10): 3361–3365. doi: 10.1109/TCSII.2021.3070159
    [10]
    王亚军, 李明, 刘高峰. 复杂脉冲序列的有限新息率采样方法[J]. 电子与信息学报, 2013, 35(7): 1606–1611. doi: 10.3724/SP.J.1146.2012.01329

    WANG Yajun, LI Ming, and LIU Gaofeng. Sampling complex pulse streams with finite rate of innovation methods[J]. Journal of Electronics &Information Technology, 2013, 35(7): 1606–1611. doi: 10.3724/SP.J.1146.2012.01329
    [11]
    VETTERLI M, MARZILIANO P, and BLU T. Sampling signals with finite rate of innovation[J]. IEEE Transactions on Signal Processing, 2002, 50(6): 1417–1428. doi: 10.1109/TSP.2002.1003065
    [12]
    QIU Tianyu, LIAO Wenjing, HUANG Yihui, et al. An automatic denoising method for NMR spectroscopy based on low-rank Hankel model[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 6010612. doi: 10.1109/TIM.2021.3109743
    [13]
    SIMEONI M, BESSON A, HURLEY P, et al. CPGD: Cadzow plug-and-play gradient descent for generalised FRI[J]. IEEE Transactions on Signal Processing, 2020, 69: 42–57. doi: 10.1109/TSP.2020.3041089
    [14]
    GONG Yu, XIAO Shaoqiu, and WANG Bingzhong. Synthesis of sparse planar arrays with multiple patterns by the generalized matrix enhancement and matrix pencil[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 869–881. doi: 10.1109/TAP.2020.3016484
    [15]
    HU Yonggang, ABHAYAPALA T D, and SAMARASINGHE P N. Multiple source direction of arrival estimations using relative sound pressure based MUSIC[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 253–264. doi: 10.1109/TASLP.2020.3039569
    [16]
    LONG Wenxuan, CHEN Rui, MORETTI M, et al. AoA estimation for OAM communication systems with mode-frequency multi-time ESPRIT method[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 5094–5098. doi: 10.1109/TVT.2021.3070358
    [17]
    王亚军, 李明, 刘高峰. 基于改进指数再生采样核的有限新息率采样系统[J]. 电子与信息学报, 2013, 35(9): 2088–2093. doi: 10.3724/SP.J.1146.2013.00059

    WANG Yajun, LI Ming, and LIU Gaofeng. Finite rate of innovation sampling system based on modified exponential reproducing sampling kernel[J]. Journal of Electronics &Information Technology, 2013, 35(9): 2088–2093. doi: 10.3724/SP.J.1146.2013.00059
    [18]
    KIM J H, MAMOU J, KOUAMÉ D, et al. Autoregressive model-based reconstruction of quantitative acoustic maps from RF signals sampled at innovation rate[J]. IEEE Transactions on Computational Imaging, 2020, 6: 993–1006. doi: 10.1109/TCI.2020.3000086
    [19]
    NAAMAN H, MULLETI S, and ELDAR Y C. FRI-TEM: Time encoding sampling of finite-rate-of-innovation signals[J]. IEEE Transactions on Signal Processing, 2022, 70: 2267–2279. doi: 10.1109/TSP.2022.3167146
    [20]
    MULLETI S and SEELAMANTULA C S. Paley-wiener characterization of kernels for finite-rate-of-innovation sampling[J]. IEEE Transactions on Signal Processing, 2017, 65(22): 5860–5872. doi: 10.1109/TSP.2017.2733484
    [21]
    NAGESH S, MULLETI S, and SEELAMANTULA C S. On the role of the Hilbert transform in boosting the performance of the annihilating filter[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014: 1836–1840.
    [22]
    BARROS B and JOHNSON B D. Sparse recovery using the discrete cosine transform[J]. The Journal of Geometric Analysis, 2021, 31(9): 8991–8998. doi: 10.1007/s12220-020-00574-0
    [23]
    FU Ning, HUANG Guoxing, QIAO Liyan, et al. Sub-Nyquist sampling and recovery of pulse streams with the real parts of fourier coefficients[J]. IEEE Access, 2017, 5: 22667–22677. doi: 10.1109/ACCESS.2017.2763421
    [24]
    CHI Yuejie and DA COSTA M F. Harnessing sparsity over the continuum: atomic norm minimization for superresolution[J]. IEEE Signal Processing Magazine, 2020, 37(2): 39–57. doi: 10.1109/MSP.2019.2962209
    [25]
    ZHAO Yijiu, HU Yuhen, and WANG Houjun. Enhanced random equivalent sampling based on compressed sensing[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(3): 579–586. doi: 10.1109/TIM.2011.2170729
    [26]
    FISCHER J V, ROMMEL T, and STENS R L. Poisson’s summation formula in radar imaging[C]. 13th European Conference on Synthetic Aperture Radar, Zurich, Switzerland, 2021: 1–6.
    [27]
    BLU T, DRAGOTTI P L, VETTERLI M, et al. Sparse sampling of signal innovations[J]. IEEE Signal Processing Magazine, 2008, 25(2): 31–40. doi: 10.1109/MSP.2007.914998
    [28]
    HEREDIA-JUESAS J, MOLAEI A, TIRADO L, et al. Consensus and sectioning-based ADMM with norm-1 regularization for imaging with a compressive reflector antenna[J]. IEEE Transactions on Computational Imaging, 2021, 7: 1189–1204. doi: 10.1109/TCI.2021.3124360
    [29]
    MECKES M W. On the spectral norm of a random Toeplitz matrix[J]. Electronic Communications in Probability, 2007, 12(2): 315–325. doi: 10.1214/ECP.v12-1313
    [30]
    WEI Xiaoyao and DRAGOTTI P L. Guaranteed performance in the FRI setting[J]. IEEE Signal Processing Letters, 2015, 22(10): 1661–1665. doi: 10.1109/LSP.2015.2411154
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (497) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return