Citation: | YUN Shuangxing, XU Hongwei, FU Ning, QIAO Liyan. Sub-Nyquist Sampling of Pulse Streams Based on the Real Part of Fourier Coefficients[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2153-2161. doi: 10.11999/JEIT220558 |
[1] |
UNSER M. Sampling-50 years after Shannon[J]. Proceedings of the IEEE, 2000, 88(4): 569–587. doi: 10.1109/5.843002
|
[2] |
陈鹏, 孟晨, 王成. 基于高度冗余Gabor框架的欠Nyquist采样系统子空间探测[J]. 电子与信息学报, 2015, 37(12): 2877–2884. doi: 10.11999/JEIT150327
CHEN Peng, MENG Chen, and WANG Cheng. Subspace detection of sub-Nyquist sampling system based on highly redundant Gabor frames[J]. Journal of Electronics &Information Technology, 2015, 37(12): 2877–2884. doi: 10.11999/JEIT150327
|
[3] |
张素玲, 席峰, 陈胜垚, 等. 基于正交压缩采样系统的脉冲雷达回波信号实时重构方法[J]. 电子与信息学报, 2016, 38(5): 1064–1071. doi: 10.11999/JEIT150767
ZHANG Suling, XI Feng, CHEN Shengyao, et al. A real-time reconstruction scheme of pulsed radar echoes with quadrature compressive sampling[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1064–1071. doi: 10.11999/JEIT150767
|
[4] |
QI Peihan, LI Zan, LI Hongbin, et al. Blind sub-Nyquist spectrum sensing with modulated wideband converter[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4278–4288. doi: 10.1109/TVT.2018.2794779
|
[5] |
TUR R, ELDAR Y C, and FRIEDMAN Z. Innovation rate sampling of pulse streams with application to ultrasound imaging[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1827–1842. doi: 10.1109/TSP.2011.2105480
|
[6] |
TARAR M O and KHALID Z. Reconstruction of finite rate of innovation spherical signals in the presence of noise using deep learning architecture[C]. 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, 2021: 1487–1491.
|
[7] |
HUANG Guoxing, YANG Zeming, LU Weidang, et al. Sub-Nyquist sampling of ECG signals based on the extension of variable pulsewidth model[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 6501114. doi: 10.1109/TIM.2022.3144213
|
[8] |
DA COSTA M F and CHI Yuejie. Compressed super-resolution of positive sources[J]. IEEE Signal Processing Letters, 2020, 28: 56–60. doi: 10.1109/LSP.2020.3045343
|
[9] |
HUANG Guoxing, CHEN Linlin, LU Weidang, et al. FRI sampling of parametric signals with non-ideal Sinc kernel[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(10): 3361–3365. doi: 10.1109/TCSII.2021.3070159
|
[10] |
王亚军, 李明, 刘高峰. 复杂脉冲序列的有限新息率采样方法[J]. 电子与信息学报, 2013, 35(7): 1606–1611. doi: 10.3724/SP.J.1146.2012.01329
WANG Yajun, LI Ming, and LIU Gaofeng. Sampling complex pulse streams with finite rate of innovation methods[J]. Journal of Electronics &Information Technology, 2013, 35(7): 1606–1611. doi: 10.3724/SP.J.1146.2012.01329
|
[11] |
VETTERLI M, MARZILIANO P, and BLU T. Sampling signals with finite rate of innovation[J]. IEEE Transactions on Signal Processing, 2002, 50(6): 1417–1428. doi: 10.1109/TSP.2002.1003065
|
[12] |
QIU Tianyu, LIAO Wenjing, HUANG Yihui, et al. An automatic denoising method for NMR spectroscopy based on low-rank Hankel model[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 6010612. doi: 10.1109/TIM.2021.3109743
|
[13] |
SIMEONI M, BESSON A, HURLEY P, et al. CPGD: Cadzow plug-and-play gradient descent for generalised FRI[J]. IEEE Transactions on Signal Processing, 2020, 69: 42–57. doi: 10.1109/TSP.2020.3041089
|
[14] |
GONG Yu, XIAO Shaoqiu, and WANG Bingzhong. Synthesis of sparse planar arrays with multiple patterns by the generalized matrix enhancement and matrix pencil[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 869–881. doi: 10.1109/TAP.2020.3016484
|
[15] |
HU Yonggang, ABHAYAPALA T D, and SAMARASINGHE P N. Multiple source direction of arrival estimations using relative sound pressure based MUSIC[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 253–264. doi: 10.1109/TASLP.2020.3039569
|
[16] |
LONG Wenxuan, CHEN Rui, MORETTI M, et al. AoA estimation for OAM communication systems with mode-frequency multi-time ESPRIT method[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 5094–5098. doi: 10.1109/TVT.2021.3070358
|
[17] |
王亚军, 李明, 刘高峰. 基于改进指数再生采样核的有限新息率采样系统[J]. 电子与信息学报, 2013, 35(9): 2088–2093. doi: 10.3724/SP.J.1146.2013.00059
WANG Yajun, LI Ming, and LIU Gaofeng. Finite rate of innovation sampling system based on modified exponential reproducing sampling kernel[J]. Journal of Electronics &Information Technology, 2013, 35(9): 2088–2093. doi: 10.3724/SP.J.1146.2013.00059
|
[18] |
KIM J H, MAMOU J, KOUAMÉ D, et al. Autoregressive model-based reconstruction of quantitative acoustic maps from RF signals sampled at innovation rate[J]. IEEE Transactions on Computational Imaging, 2020, 6: 993–1006. doi: 10.1109/TCI.2020.3000086
|
[19] |
NAAMAN H, MULLETI S, and ELDAR Y C. FRI-TEM: Time encoding sampling of finite-rate-of-innovation signals[J]. IEEE Transactions on Signal Processing, 2022, 70: 2267–2279. doi: 10.1109/TSP.2022.3167146
|
[20] |
MULLETI S and SEELAMANTULA C S. Paley-wiener characterization of kernels for finite-rate-of-innovation sampling[J]. IEEE Transactions on Signal Processing, 2017, 65(22): 5860–5872. doi: 10.1109/TSP.2017.2733484
|
[21] |
NAGESH S, MULLETI S, and SEELAMANTULA C S. On the role of the Hilbert transform in boosting the performance of the annihilating filter[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014: 1836–1840.
|
[22] |
BARROS B and JOHNSON B D. Sparse recovery using the discrete cosine transform[J]. The Journal of Geometric Analysis, 2021, 31(9): 8991–8998. doi: 10.1007/s12220-020-00574-0
|
[23] |
FU Ning, HUANG Guoxing, QIAO Liyan, et al. Sub-Nyquist sampling and recovery of pulse streams with the real parts of fourier coefficients[J]. IEEE Access, 2017, 5: 22667–22677. doi: 10.1109/ACCESS.2017.2763421
|
[24] |
CHI Yuejie and DA COSTA M F. Harnessing sparsity over the continuum: atomic norm minimization for superresolution[J]. IEEE Signal Processing Magazine, 2020, 37(2): 39–57. doi: 10.1109/MSP.2019.2962209
|
[25] |
ZHAO Yijiu, HU Yuhen, and WANG Houjun. Enhanced random equivalent sampling based on compressed sensing[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(3): 579–586. doi: 10.1109/TIM.2011.2170729
|
[26] |
FISCHER J V, ROMMEL T, and STENS R L. Poisson’s summation formula in radar imaging[C]. 13th European Conference on Synthetic Aperture Radar, Zurich, Switzerland, 2021: 1–6.
|
[27] |
BLU T, DRAGOTTI P L, VETTERLI M, et al. Sparse sampling of signal innovations[J]. IEEE Signal Processing Magazine, 2008, 25(2): 31–40. doi: 10.1109/MSP.2007.914998
|
[28] |
HEREDIA-JUESAS J, MOLAEI A, TIRADO L, et al. Consensus and sectioning-based ADMM with norm-1 regularization for imaging with a compressive reflector antenna[J]. IEEE Transactions on Computational Imaging, 2021, 7: 1189–1204. doi: 10.1109/TCI.2021.3124360
|
[29] |
MECKES M W. On the spectral norm of a random Toeplitz matrix[J]. Electronic Communications in Probability, 2007, 12(2): 315–325. doi: 10.1214/ECP.v12-1313
|
[30] |
WEI Xiaoyao and DRAGOTTI P L. Guaranteed performance in the FRI setting[J]. IEEE Signal Processing Letters, 2015, 22(10): 1661–1665. doi: 10.1109/LSP.2015.2411154
|