Citation: | ZENG Li, XIONG Xilin, CHEN Wei. Deep Image Prior Acceleration Method for Target Offset in Low-dose CT Images Denoising[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2188-2196. doi: 10.11999/JEIT220551 |
[1] |
BAI Ti, WANG Biling, NGUYEN D, et al. Deep interactive denoiser (DID) for X-ray computed tomography[J]. IEEE Transactions on Medical Imaging, 2021, 40(11): 2965–2975. doi: 10.1109/TMI.2021.3101241
|
[2] |
RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992, 60(1/4): 259–268. doi: 10.1016/0167-2789(92)90242-F
|
[3] |
王大凯, 侯榆青, 彭进业. 图像处理的偏微分方程方法[M]. 北京: 科学出版社, 2008: 146–147.
WANG Dakai, HOU Yuqing, and PENG Jinye. Partial Differential Equation Method for Image Processing[M]. Beijing: Science Press, 2008: 146–147.
|
[4] |
XU Li, YAN Qiong, XIA Yang, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics, 2012, 31(6): 139. doi: 10.1145/2366145.2366158
|
[5] |
ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206
|
[6] |
MORAN N, SCHMIDT D, ZHONG Yu, et al. Noisier2Noise: Learning to denoise from unpaired noisy data[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 12061–12069.
|
[7] |
YIE S Y, KANG S K, HWANG D, et al. Self-supervised PET denoising[J]. Nuclear Medicine and Molecular Imaging, 2020, 54(6): 299–304. doi: 10.1007/s13139-020-00667-2
|
[8] |
LEMPITSKY V, VEDALDI A, and ULYANOV D. Deep image prior[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9446–9454.
|
[9] |
PAN Xingang, ZHAN Xiaohang, DAI Bo, et al. Exploiting deep generative prior for versatile image restoration and manipulation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7474–7489. doi: 10.1109/TPAMI.2021.3115428
|
[10] |
DITTMER S, KLUTH T, MAASS P, et al. Regularization by Architecture: A deep prior approach for inverse problems[J]. Journal of Mathematical Imaging and Vision, 2020, 62(3): 456–470. doi: 10.1007/s10851-019-00923-x
|
[11] |
CHENG Zezhou, GADELHA M, MAJI S, et al. A Bayesian perspective on the deep image prior[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5438–5446.
|
[12] |
CUI Jianan, GONG Kuang, GUO Ning, et al. PET image denoising using unsupervised deep learning[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46(13): 2780–2789. doi: 10.1007/s00259-019-04468-4
|
[13] |
HASHIMOTO F, OHBA H, OTE K, et al. Dynamic PET image denoising using deep convolutional neural networks without prior training datasets[J]. IEEE Access, 2019, 7: 96594–96603. doi: 10.1109/ACCESS.2019.2929230
|
[14] |
MATAEV G, ELAD M, and MILANFAR P. DeepRED: Deep image prior powered by RED[J]. arXiv: 1903.10176, 2019.
|
[15] |
ONISHI Y, HASHIMOTO F, OTE K, et al. Anatomical-guided attention enhances unsupervised pet image denoising performance[J]. Medical Image Analysis, 2021, 74: 102226. doi: 10.1016/j.media.2021.102226
|
[16] |
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238
|