Advanced Search
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
ZENG Li, XIONG Xilin, CHEN Wei. Deep Image Prior Acceleration Method for Target Offset in Low-dose CT Images Denoising[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2188-2196. doi: 10.11999/JEIT220551
Citation: ZENG Li, XIONG Xilin, CHEN Wei. Deep Image Prior Acceleration Method for Target Offset in Low-dose CT Images Denoising[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2188-2196. doi: 10.11999/JEIT220551

Deep Image Prior Acceleration Method for Target Offset in Low-dose CT Images Denoising

doi: 10.11999/JEIT220551
Funds:  The National Natural Science Foundation of China (61771003), The Graduate Scientific Research and Innovation Foundation of Chongqing (CYS19026)
  • Received Date: 2022-05-05
  • Rev Recd Date: 2022-10-14
  • Available Online: 2022-10-21
  • Publish Date: 2023-06-10
  • Low Dose CT (LDCT) images can significantly reduce the X-ray radiation dose, but there is a lot of noise that affects doctors' diagnosis. Deep Image Prior (DIP) is an unsupervised deep learning algorithm that uses random tensor as the input of neural network and iterates with a single LDCT image as the target. However, DIP needs thousands of iterations to get the best denoised results, resulting in the slow running speed of this method. Therefore, a DIP acceleration method for target offset in low-dose CT images is proposed, which aims to improve the running speed while maintaining the quality of denoised image. According to the similarity of LDCT slice images of an organ (such as lungs), the algorithm associates independent networks whose target images are different slices by inheriting parameters, updates the network parameters corresponding to the current slice based on the network parameters corresponding to the previous slice, and takes the network parameters corresponding to the current slice as the basis of next network corresponding to next slice to update parameters; Since the input of DIP network is a fixed random tensor, which is different from the target image greatly, this paper uses the LDCT image preprocessed by the traditional models as the network input to improve further the network iteration speed. Experiments show that the proposed acceleration algorithm can improve the iteration speed by 10.45% compared with the original DIP network without traditional model preprocessing. When LDCT preprocessed by Relative Total Variation (RTV) model is used as the network input, the image peak signal-to-noise ratio can not only reach 29.13, but also the total iterative speed can be increased by 94.31%. Therefore, this algorithm can greatly improve the running speed while maintaining the denoised quality of DIP, especially when the CT image preprocessed by RTV model is used as the network input, the effect of improving the running speed is more obvious.
  • loading
  • [1]
    BAI Ti, WANG Biling, NGUYEN D, et al. Deep interactive denoiser (DID) for X-ray computed tomography[J]. IEEE Transactions on Medical Imaging, 2021, 40(11): 2965–2975. doi: 10.1109/TMI.2021.3101241
    [2]
    RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992, 60(1/4): 259–268. doi: 10.1016/0167-2789(92)90242-F
    [3]
    王大凯, 侯榆青, 彭进业. 图像处理的偏微分方程方法[M]. 北京: 科学出版社, 2008: 146–147.

    WANG Dakai, HOU Yuqing, and PENG Jinye. Partial Differential Equation Method for Image Processing[M]. Beijing: Science Press, 2008: 146–147.
    [4]
    XU Li, YAN Qiong, XIA Yang, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics, 2012, 31(6): 139. doi: 10.1145/2366145.2366158
    [5]
    ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206
    [6]
    MORAN N, SCHMIDT D, ZHONG Yu, et al. Noisier2Noise: Learning to denoise from unpaired noisy data[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 12061–12069.
    [7]
    YIE S Y, KANG S K, HWANG D, et al. Self-supervised PET denoising[J]. Nuclear Medicine and Molecular Imaging, 2020, 54(6): 299–304. doi: 10.1007/s13139-020-00667-2
    [8]
    LEMPITSKY V, VEDALDI A, and ULYANOV D. Deep image prior[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9446–9454.
    [9]
    PAN Xingang, ZHAN Xiaohang, DAI Bo, et al. Exploiting deep generative prior for versatile image restoration and manipulation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7474–7489. doi: 10.1109/TPAMI.2021.3115428
    [10]
    DITTMER S, KLUTH T, MAASS P, et al. Regularization by Architecture: A deep prior approach for inverse problems[J]. Journal of Mathematical Imaging and Vision, 2020, 62(3): 456–470. doi: 10.1007/s10851-019-00923-x
    [11]
    CHENG Zezhou, GADELHA M, MAJI S, et al. A Bayesian perspective on the deep image prior[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5438–5446.
    [12]
    CUI Jianan, GONG Kuang, GUO Ning, et al. PET image denoising using unsupervised deep learning[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46(13): 2780–2789. doi: 10.1007/s00259-019-04468-4
    [13]
    HASHIMOTO F, OHBA H, OTE K, et al. Dynamic PET image denoising using deep convolutional neural networks without prior training datasets[J]. IEEE Access, 2019, 7: 96594–96603. doi: 10.1109/ACCESS.2019.2929230
    [14]
    MATAEV G, ELAD M, and MILANFAR P. DeepRED: Deep image prior powered by RED[J]. arXiv: 1903.10176, 2019.
    [15]
    ONISHI Y, HASHIMOTO F, OTE K, et al. Anatomical-guided attention enhances unsupervised pet image denoising performance[J]. Medical Image Analysis, 2021, 74: 102226. doi: 10.1016/j.media.2021.102226
    [16]
    DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (426) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return