Pengfei YANG, Xiaolong WEN, Xiaoming NI, Chunrong PENG. A Novel Non-contact AC Voltage Detector Based on Concentric Double-layer Spherical Shell Structure[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1637-1643. doi: 10.11999/JEIT200286
Citation:
LI Guojun, LONG Kun, YE Changrong, LIANG Jiawen. Research on OTSM Iterative Detection Algorithm in High-speed Mobile Environment[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2098-2104. doi: 10.11999/JEIT220541
Pengfei YANG, Xiaolong WEN, Xiaoming NI, Chunrong PENG. A Novel Non-contact AC Voltage Detector Based on Concentric Double-layer Spherical Shell Structure[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1637-1643. doi: 10.11999/JEIT200286
Citation:
LI Guojun, LONG Kun, YE Changrong, LIANG Jiawen. Research on OTSM Iterative Detection Algorithm in High-speed Mobile Environment[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2098-2104. doi: 10.11999/JEIT220541
Lab of Beyond LOS Reliable Information Transmission, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2.
School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
3.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
4.
Postdoctoral Research Workstation of Chongqing Key Laboratory of Optoelectronic Information Sensing and Transmission Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Funds:
The National Key R& D Program of China (2019YFC1511300), Chongqing Basic Research and Frontier Exploration Project (cstc2021ycjh-bgzxm0072)
Orthogonal Time Sequency Multiplexing (OTSM) multiplexes information symbols in the delay-sequence domain through concatenated time division and Walsh-Hadamard multiplexing. Due to the Walsh-Hadamard Transform (WHT) does not require complex multiplication operations in the modulation and demodulation process, it has lower modulation complexity than Orthogonal Time-Frequency Space (OTFS). In this paper, a two-stage equalizer is proposed for OTSM systems in high-speed mobile environments. First, low-complexity MMSE detection is performed block-by-block in the time domain by utilizing the sparsity and band structure of the channel matrix; Then Gauss-Seid (GS) iterative detection further removes residual symbol interference. The simulation results show that, compared with the GS iterative detection algorithm based on single-tap frequency domain equalization, the proposed algorithm has a performance gain of 1.8 dB when 16QAM modulation is used and the bit error rate is 10–4.
基于服务链映射的合并策略[4](consolidation policy),每个服务节点n偏好部署尽可能多的VNF实例以提升节点的资源利用率,但这并不能保证各服务节点的资源碎片化程度最小。为此,采用最佳适应算法[14](Best Fit Algorithm, BFA),对服务链c中的VNF实例资源需求进行从大到小排序,按照贪心启发式思想优先选择使得服务节点剩余资源空间最小的VNF实例,构成服务节点匹配偏好表:
算法3 博弈选择算法 输入:构成服务链c的VNF实例集合Rc,服务节点集合NS 输出:服务链和服务节点的平稳匹配结果 根据输入初始化; if 服务链c是不饱和的 do for each fp in Rc do n←get highest rank in SC(NS); if (volIkn>dIkfp)&&(fpinNS(SC)) then 将fp匹配给n; volIkn=volIkn−dIkfp; end else 找出所有满足fp≻nfp′的fp′; 拒绝所有fp′并更新服务节点n的资源; volIkn=volIkn−dIkfp; 将fp′从服务节点映射偏好表NS(SC)中移除; 将n从服务链映射偏好表SC(NS)中移除; end end for 输出匹配结果; else return
WANG Chengxiang, HUANG Jie, WANG Haiming, et al. 6G wireless channel measurements and models: Trends and challenges[J]. IEEE Vehicular Technology Magazine, 2020, 15(4): 22–32. doi: 10.1109/MVT.2020.3018436
[2]
SAYED A, KHATUN M, AHMED T, et al. Performance analysis of OFDM system on multipath fading and inter symbol interference (ISI) using AWGN[M]. DAS A K, NAYAK J, NAIK B, et al. Computational Intelligence in Pattern Recognition. Singapore: Springer, 2022: 25–36. doi: 10.1007/978-981-16-2543-5_3.
[3]
JIANG T, CHEN H H, WU H C, et al. Channel modeling and inter-carrier interference analysis for V2V communication systems in frequency-dispersive channels[J]. Mobile Networks and Applications, 2010, 15(1): 4–12. doi: 10.1007/s11036-009-0177-2
[4]
HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. Proceedings of 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6.
[5]
RAMACHANDRAN M K, SURABHI G D, and CHOCKALINGAM A. OTFS: A new modulation scheme for high-mobility use cases[J]. Journal of the Indian Institute of Science, 2020, 100(2): 315–336. doi: 10.1007/s41745-020-00167-4
[6]
NAVEEN C and SUDHA V. Peak-to-average power ratio reduction in OTFS modulation using companding technique[C]. Proceedings of the 2020 5th International Conference on Devices, Circuits and Systems, Coimbatore, India, 2020: 140–143. doi: 10.1109/ICDCS48716.2020.243567.
[7]
LI Shuangyang, YUAN Jinhong, YUAN Weijie, et al. Performance analysis of coded OTFS systems over high-mobility channels[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 6033–6048. doi: 10.1109/TWC.2021.3071493
[8]
RAVITEJA P, HONG Yi, VITERBO E, et al. Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 957–961. doi: 10.1109/TVT.2018.2878891
[9]
ZEMEN T, HOFER M, LÖSCHENBRAND D, et al. Iterative detection for orthogonal precoding in doubly selective channels[C]. Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Bologna, Italy, 2018: 1–7. doi: 10.1109/PIMRC.2018.8580716.
[10]
THAJ T, VITERBO E, and HONG Yi. Orthogonal time sequency multiplexing modulation: Analysis and low-complexity receiver design[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 7842–7855. doi: 10.1109/TWC.2021.3088479
[11]
STOFFER D S. Walsh-Fourier analysis and its statistical applications[J]. Journal of the American Statistical Association, 1991, 86(414): 461–479. doi: 10.1080/01621459.1991.10475067
[12]
HARMUTH H F. Applications of Walsh functions in communications[J]. IEEE Spectrum, 1969, 6(11): 82–91. doi: 10.1109/MSPEC.1969.5214175
[13]
RAVITEJA P, PHAN K T, HONG Yi, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6501–6515. doi: 10.1109/TWC.2018.2860011
[14]
RAVITEJA P, PHAN K T, JIN Qianyu, et al. Low-complexity iterative detection for orthogonal time frequency space modulation[C]. Proceedings of 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6. doi: 10.1109/WCNC.2018.8377159.
[15]
THAJ T and VITERBO E. Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15606–15622. doi: 10.1109/TVT.2020.3044276
[16]
LI Li, WEI Hua, HUANG Yao, et al. A simple two-stage equalizer with simplified orthogonal time frequency space modulation over rapidly time-varying channels[J]. arXiv: 1709.02505, 2017.
[17]
WALKER D W, ALDCROFT T, CISNEROS A, et al. LU decomposition of banded matrices and the solution of linear systems on hypercubes[C]. Proceedings of the Third Conference on Hypercube Concurrent Computers and Applications, Pasadena, USA, 1989: 1635–1655. doi: 10.1145/63047.63124.
[18]
BJÖRCK Å. Numerical Methods for Least Squares Problems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1996: 274–283.
[19]
SAAD Y. Iterative Methods for Sparse Linear Systems[M]. 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics, 2003: 95–116.
[20]
AHMADI S, SRINIVASAN R, CHOI H, et al. Channel models for IEEE 802.16 m evaluation methodology document[J]. IEEE 802. 16 Broadband Wireless Access Working Group, 2007: 03–12.
Pengfei YANG, Xiaolong WEN, Xiaoming NI, Chunrong PENG. A Novel Non-contact AC Voltage Detector Based on Concentric Double-layer Spherical Shell Structure[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1637-1643. doi: 10.11999/JEIT200286
Pengfei YANG, Xiaolong WEN, Xiaoming NI, Chunrong PENG. A Novel Non-contact AC Voltage Detector Based on Concentric Double-layer Spherical Shell Structure[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1637-1643. doi: 10.11999/JEIT200286
算法3 博弈选择算法 输入:构成服务链c的VNF实例集合Rc,服务节点集合NS 输出:服务链和服务节点的平稳匹配结果 根据输入初始化; if 服务链c是不饱和的 do for each fp in Rc do n←get highest rank in SC(NS); if (volIkn>dIkfp)&&(fpinNS(SC)) then 将fp匹配给n; volIkn=volIkn−dIkfp; end else 找出所有满足fp≻nfp′的fp′; 拒绝所有fp′并更新服务节点n的资源; volIkn=volIkn−dIkfp; 将fp′从服务节点映射偏好表NS(SC)中移除; 将n从服务链映射偏好表SC(NS)中移除; end end for 输出匹配结果; else return