Advanced Search
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
LI Guojun, LONG Kun, YE Changrong, LIANG Jiawen. Research on OTSM Iterative Detection Algorithm in High-speed Mobile Environment[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2098-2104. doi: 10.11999/JEIT220541
Citation: LI Guojun, LONG Kun, YE Changrong, LIANG Jiawen. Research on OTSM Iterative Detection Algorithm in High-speed Mobile Environment[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2098-2104. doi: 10.11999/JEIT220541

Research on OTSM Iterative Detection Algorithm in High-speed Mobile Environment

doi: 10.11999/JEIT220541
Funds:  The National Key R& D Program of China (2019YFC1511300), Chongqing Basic Research and Frontier Exploration Project (cstc2021ycjh-bgzxm0072)
  • Received Date: 2022-05-05
  • Rev Recd Date: 2022-09-15
  • Available Online: 2022-10-13
  • Publish Date: 2023-06-10
  • Orthogonal Time Sequency Multiplexing (OTSM) multiplexes information symbols in the delay-sequence domain through concatenated time division and Walsh-Hadamard multiplexing. Due to the Walsh-Hadamard Transform (WHT) does not require complex multiplication operations in the modulation and demodulation process, it has lower modulation complexity than Orthogonal Time-Frequency Space (OTFS). In this paper, a two-stage equalizer is proposed for OTSM systems in high-speed mobile environments. First, low-complexity MMSE detection is performed block-by-block in the time domain by utilizing the sparsity and band structure of the channel matrix; Then Gauss-Seid (GS) iterative detection further removes residual symbol interference. The simulation results show that, compared with the GS iterative detection algorithm based on single-tap frequency domain equalization, the proposed algorithm has a performance gain of 1.8 dB when 16QAM modulation is used and the bit error rate is 10–4.
  • loading
  • [1]
    WANG Chengxiang, HUANG Jie, WANG Haiming, et al. 6G wireless channel measurements and models: Trends and challenges[J]. IEEE Vehicular Technology Magazine, 2020, 15(4): 22–32. doi: 10.1109/MVT.2020.3018436
    [2]
    SAYED A, KHATUN M, AHMED T, et al. Performance analysis of OFDM system on multipath fading and inter symbol interference (ISI) using AWGN[M]. DAS A K, NAYAK J, NAIK B, et al. Computational Intelligence in Pattern Recognition. Singapore: Springer, 2022: 25–36. doi: 10.1007/978-981-16-2543-5_3.
    [3]
    JIANG T, CHEN H H, WU H C, et al. Channel modeling and inter-carrier interference analysis for V2V communication systems in frequency-dispersive channels[J]. Mobile Networks and Applications, 2010, 15(1): 4–12. doi: 10.1007/s11036-009-0177-2
    [4]
    HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. Proceedings of 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6.
    [5]
    RAMACHANDRAN M K, SURABHI G D, and CHOCKALINGAM A. OTFS: A new modulation scheme for high-mobility use cases[J]. Journal of the Indian Institute of Science, 2020, 100(2): 315–336. doi: 10.1007/s41745-020-00167-4
    [6]
    NAVEEN C and SUDHA V. Peak-to-average power ratio reduction in OTFS modulation using companding technique[C]. Proceedings of the 2020 5th International Conference on Devices, Circuits and Systems, Coimbatore, India, 2020: 140–143. doi: 10.1109/ICDCS48716.2020.243567.
    [7]
    LI Shuangyang, YUAN Jinhong, YUAN Weijie, et al. Performance analysis of coded OTFS systems over high-mobility channels[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 6033–6048. doi: 10.1109/TWC.2021.3071493
    [8]
    RAVITEJA P, HONG Yi, VITERBO E, et al. Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 957–961. doi: 10.1109/TVT.2018.2878891
    [9]
    ZEMEN T, HOFER M, LÖSCHENBRAND D, et al. Iterative detection for orthogonal precoding in doubly selective channels[C]. Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Bologna, Italy, 2018: 1–7. doi: 10.1109/PIMRC.2018.8580716.
    [10]
    THAJ T, VITERBO E, and HONG Yi. Orthogonal time sequency multiplexing modulation: Analysis and low-complexity receiver design[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 7842–7855. doi: 10.1109/TWC.2021.3088479
    [11]
    STOFFER D S. Walsh-Fourier analysis and its statistical applications[J]. Journal of the American Statistical Association, 1991, 86(414): 461–479. doi: 10.1080/01621459.1991.10475067
    [12]
    HARMUTH H F. Applications of Walsh functions in communications[J]. IEEE Spectrum, 1969, 6(11): 82–91. doi: 10.1109/MSPEC.1969.5214175
    [13]
    RAVITEJA P, PHAN K T, HONG Yi, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6501–6515. doi: 10.1109/TWC.2018.2860011
    [14]
    RAVITEJA P, PHAN K T, JIN Qianyu, et al. Low-complexity iterative detection for orthogonal time frequency space modulation[C]. Proceedings of 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6. doi: 10.1109/WCNC.2018.8377159.
    [15]
    THAJ T and VITERBO E. Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15606–15622. doi: 10.1109/TVT.2020.3044276
    [16]
    LI Li, WEI Hua, HUANG Yao, et al. A simple two-stage equalizer with simplified orthogonal time frequency space modulation over rapidly time-varying channels[J]. arXiv: 1709.02505, 2017.
    [17]
    WALKER D W, ALDCROFT T, CISNEROS A, et al. LU decomposition of banded matrices and the solution of linear systems on hypercubes[C]. Proceedings of the Third Conference on Hypercube Concurrent Computers and Applications, Pasadena, USA, 1989: 1635–1655. doi: 10.1145/63047.63124.
    [18]
    BJÖRCK Å. Numerical Methods for Least Squares Problems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1996: 274–283.
    [19]
    SAAD Y. Iterative Methods for Sparse Linear Systems[M]. 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics, 2003: 95–116.
    [20]
    AHMADI S, SRINIVASAN R, CHOI H, et al. Channel models for IEEE 802.16 m evaluation methodology document[J]. IEEE 802. 16 Broadband Wireless Access Working Group, 2007: 03–12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (576) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return