Citation: | LIU Dongsheng, WEI Lai, ZOU Xuecheng, LU Jiahao, CHENG Xuan, HU Ang, LI Dejian, ZHAO Xu, JIANG Quming. Design of Hybrid Multimode Convolutional Neural Network Accelerator for Electrocardiogram Detection[J]. Journal of Electronics & Information Technology, 2023, 45(1): 33-41. doi: 10.11999/JEIT220534 |
[1] |
United Nations. World population ageing 2017: highlights[R]. ST/ESA/SER. A/397, 2017.
|
[2] |
ZHANG Jiancan. Construction and application of “internet” mental health cloud platform based on trinity model analysis[C]. 2021 International Conference on Internet, Education and Information Technology (IEIT), Suzhou, China, 2021: 1–5.
|
[3] |
LI Feiteng, WU Jiaquan, JIA Menghan, et al. Automated heartbeat classification exploiting convolutional neural network with channel-wise attention[J]. IEEE Access, 2019, 7: 122955–122963. doi: 10.1109/ACCESS.2019.2938617
|
[4] |
QIAN Yanmin, BI Mengxiao, TAN Tian, et al. Very deep convolutional neural networks for noise robust speech recognition[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(12): 2263–2276. doi: 10.1109/TASLP.2016.2602884
|
[5] |
LI Zhen, WANG Yuqing, ZHI Tian, et al. A survey of neural network accelerators[J]. Frontiers of Computer Science, 2017, 11(5): 746–761. doi: 10.1007/s11704-016-6159-1
|
[6] |
WANG Ying, WANG Yongchen, SHI Cong, et al. An edge 3D CNN accelerator for low-power activity recognition[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(5): 918–930. doi: 10.1109/TCAD.2020.3011042
|
[7] |
MA Yufei, CAO Yu, VRUDHULA S, et al. Optimizing the convolution operation to accelerate deep neural networks on FPGA[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(7): 1354–1367. doi: 10.1109/TVLSI.2018.2815603
|
[8] |
PARK S W, PARK J, BONG K, et al. An energy-efficient and scalable deep learning/inference processor with tetra-parallel MIMD architecture for big data applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(6): 838–848. doi: 10.1109/TBCAS.2015.2504563
|
[9] |
TU Fengbin, WU Weiwei, WANG Yang, et al. Evolver: A deep learning processor with on-device quantization–voltage–frequency tuning[J]. IEEE Journal of Solid-State Circuits, 2021, 56(2): 658–673. doi: 10.1109/JSSC.2020.3021661
|
[10] |
ZHU Lingsong, LIU Dongsheng, LI Xiaohuan, et al. An efficient hardware architecture for epileptic seizure detection using EEG signals based on 1D-CNN[C]. 2021 IEEE 14th International Conference on ASIC (ASICON), Kunming, China, 2021: 1–4.
|
[11] |
LIU Xinheng, CHEN Yao, HAO Cong, et al. WinoCNN: Kernel sharing winograd systolic array for efficient convolutional neural network acceleration on FPGAs[C]. 2021 IEEE 32nd International Conference on Application-specific Systems, Architectures and Processors (ASAP), NJ, USA, 2021: 258–265.
|
[12] |
YUAN Zhe, LIU Yongpan, YUE Jinshan, et al. STICKER: An energy-efficient multi-sparsity compatible accelerator for convolutional neural networks in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2020, 55(2): 465–477. doi: 10.1109/JSSC.2019.2946771
|
[13] |
WEI Lai, LIU Dongsheng, LU Jiahao, et al. A low-cost hardware architecture of convolutional neural network for ECG classification[C]. 2021 9th International Symposium on Next Generation Electronics (ISNE), Changsha, China, 2021: 1–4.
|
[14] |
DU Li, DU Yuan, LI Yilei, et al. A reconfigurable streaming deep convolutional neural network accelerator for internet of things[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2018, 65(1): 198–208. doi: 10.1109/TCSI.2017.2735490
|
[15] |
MA Yufei, CAO Yu, VRUDHULA S, et al. An automatic RTL compiler for high-throughput FPGA implementation of diverse deep convolutional neural networks[C]. 2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 2017: 1–8.
|
[16] |
MA Yufei, SUDA N, CAO Yu, et al. Scalable and modularized RTL compilation of convolutional neural networks onto FPGA[C]. 2016 26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne, Switzerland, 2016: 1–8.
|
[17] |
GUO Kaiyuan, SUI Lingzhi, QIU Jiantao, et al. Angel-eye: A complete design flow for mapping CNN onto embedded FPGA[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(1): 35–47. doi: 10.1109/TCAD.2017.2705069
|
[18] |
ZHU Chaoyang, HUANG Kejie, YANG Shuyuan, et al. An efficient hardware accelerator for structured sparse convolutional neural networks on FPGAs[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(9): 1953–1965. doi: 10.1109/TVLSI.2020.3002779
|
[19] |
WANG Jichen, LIN Jun, and WANG Zhongfeng. Efficient hardware architectures for deep convolutional neural network[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2018, 65(6): 1941–1953. doi: 10.1109/TCSI.2017.2767204
|