Advanced Search
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
BAO Han, TU Guofang, ZHANG Can, GAO Shaoshuai, CHEN Deyuan. Joint Source-Channel Code Modulation Scheme Based on Variable-length Error-Correct Code and Doping Modulation[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2045-2053. doi: 10.11999/JEIT220531
Citation: BAO Han, TU Guofang, ZHANG Can, GAO Shaoshuai, CHEN Deyuan. Joint Source-Channel Code Modulation Scheme Based on Variable-length Error-Correct Code and Doping Modulation[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2045-2053. doi: 10.11999/JEIT220531

Joint Source-Channel Code Modulation Scheme Based on Variable-length Error-Correct Code and Doping Modulation

doi: 10.11999/JEIT220531
Funds:  The National Natural Science Foundation of China (61571416, 61271282), The Award Foundation of Chinese Academy of Sciences (2017-6-17)
  • Received Date: 2022-04-27
  • Accepted Date: 2022-10-08
  • Rev Recd Date: 2022-09-18
  • Available Online: 2022-10-14
  • Publish Date: 2023-06-10
  • To deal with effects of limited spectrum, fading and multipath during wireless communication, a new joint source-channel code modulation scheme is proposed. This scheme consists of a Variable-Length Error-Correct (VLEC) code and doping modulation. With the aid of EXtrinsic Information Transfer (EXIT) chart analysis for the iterative decoding characteristics, the parameters of VLEC and doping modulation are designed. The design includes: A variable-length code with large free distance is constructed to provide error correction capability; The doping code and mapping of modulation are optimized to make the EXIT curve of doping modulation match with the EXIT curve of VLEC, and hence the Signal-to-Noise Ratio (SNR) required for iterative decoding convergence is reduced. Simulation results show that over AWGN channel and Rayleigh fading channel, the proposed scheme has more than 1 dB SNR gains compared with the separated source-channel code modulation and has the best performance compared with other joint source-channel code modulation schemes. Also, at the symbol error rate of 10-4, the performance of the proposed system is 0.7 dB and 1.0 dB away from the Shannon limit, respectively.
  • loading
  • [1]
    SHANNON C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(3): 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x
    [2]
    SAYOOD K, LIU Fuling, and GIBSON J D. A constrained joint source/channel coder design[J]. IEEE Journal on Selected Areas in Communications, 1994, 12(9): 1584–1593. doi: 10.1109/49.339927
    [3]
    TAKISHIMA Y, WADA M, and MURAKAMI H. Reversible variable length codes[J]. IEEE Transactions on Communications, 1995, 43(2/4): 158–162. doi: 10.1109/26.380026
    [4]
    HUANG Chun, WU Tingyi, CHEN Poning, et al. An efficient tree search algorithm for the free distance of variable-length error-correcting codes[J]. IEEE Communications Letters, 2018, 22(3): 474–477. doi: 10.1109/LCOMM.2017.2777441
    [5]
    CHEN Y M, WU F T, LI C P, et al. An efficient construction strategy for near-optimal variable-length error-correcting codes[J]. IEEE Communications Letters, 2019, 23(3): 398–401. doi: 10.1109/LCOMM.2019.2891623
    [6]
    CHEN Y M, WU F T, LI C P, et al. On the design of near-optimal variable-length error-correcting codes for large source alphabets[J]. IEEE Transactions on Communications, 2020, 68(12): 7896–7910. doi: 10.1109/TCOMM.2020.3024192
    [7]
    BAUER R and HAGENAUER J. On variable length codes for iterative source/channel decoding[C]. Proceedings DCC 2001. Data Compression Conference, Snowbird, USA, 2001: 273–282.
    [8]
    WU H T, WU Chunfeng, and CHANG W W. Iterative symbol decoding of variable-length codes with convolutional codes[J]. Journal of Communications and Networks, 2016, 18(1): 40–49. doi: 10.1109/JCN.2016.000007
    [9]
    ZRIBI A, PYNDIAH R, ZAIBI S, et al. Low-complexity soft decoding of Huffman codes and iterative joint source channel decoding[J]. IEEE Transactions on Communications, 2012, 60(6): 1669–1679. doi: 10.1109/TCOMM.2012.041212.100330
    [10]
    CHEN Qiwang, LAU F C M, WU Huihui, et al. Analysis and improvement of error-floor performance for JSCC scheme based on double Protograph LDPC codes[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14316–14329. doi: 10.1109/TVT.2020.3036657
    [11]
    CHENG Chen, TU Guofang, and ZHANG Can. Joint source-channel coded multidimensional modulation for variable-length codes[J]. Science China, Information Sciences, 2014, 57(6): 062302. doi: 10.1007/s11432-014-5079-7
    [12]
    谢雨, 凃国防, 张灿, 等. 不等概率可变长符号联合信源信道编码的调制[J]. 电子学报, 2021, 49(12): 2372–2380. doi: 10.12263/DZXB.20200169

    XIE Yu, TU Guofang, ZHANG Can, et al. Joint source-channel coding modulation for non-equiprobable variable-length symbols[J]. Acta Electonica Sinica, 2021, 49(12): 2372–2380. doi: 10.12263/DZXB.20200169
    [13]
    CLEVORN T, BRAUERS J, ADRAT M, et al. Turbo decodulation: Iterative combined demodulation and source-channel decoding[J]. IEEE Communications Letters, 2005, 9(9): 820–822. doi: 10.1109/LCOMM.2005.1506714
    [14]
    ALJOHANI A J, SUN Hua, NG S X, et al. Joint source and turbo trellis coded hierarchical modulation for context-aware medical image transmission[C]. 2013 IEEE 15th International Conference on E-Health Networking, Applications and Services (Healthcom 2013), Lisbon, Portugal, 2014.
    [15]
    MINALLAH N, ULLAH K, KHAN I U, et al. Efficient Wireless Video Communication Using Sophisticated Channel Coding and Transmitter Diversity Gain Technique[M]. Research Square. 2020.
    [16]
    KHAN H U, MINALLAH N, MASOOD A, et al. Performance analysis of sphere packed aided differential space-time spreading with iterative source-channel detection[J]. Sensors, 2021, 21(16): 5461. doi: 10.3390/s21165461
    [17]
    MINALLAH N, AHMED I, FRNDA J, et al. Averting BER floor with iterative source and channel decoding for layered steered space-time codes[J]. Sensors, 2021, 21(19): 6502. doi: 10.3390/s21196502
    [18]
    BREJZA M F, WANG Tao, ZHANG Wenbo, et al. Exponential golomb and rice error correction codes for generalized near-capacity joint source and channel coding[J]. IEEE Access, 2016, 4: 7154–7175. doi: 10.1109/ACCESS.2016.2584982
    [19]
    MAUNDER R G and HANZO L. Near-capacity irregular variable length coding and irregular unity rate coding[J]. IEEE Transactions on Wireless Communications, 2009, 8(11): 5500–5507. doi: 10.1109/TWC.2009.070624
    [20]
    MINALLAH N, ULLAH K, FRNDA J, et al. Transmitter diversity gain technique aided irregular channel coding for mobile video transmission[J]. Entropy, 2021, 23(2): 235. doi: 10.3390/e23020235
    [21]
    MINALLAH N, BUTT M F U, KHAN I U, et al. Analysis of near-capacity iterative decoding schemes for wireless communication using exit charts[J]. IEEE Access, 2020, 8: 124424–124436. doi: 10.1109/access.2020.3006024
    [22]
    KHALIL A, MINALLAH N, AWAN M A, et al. On the performance of wireless video communication using iterative joint source channel decoding and transmitter diversity gain technique[J]. Wireless Communications and Mobile Computing, 2020, 2020: 8873912. doi: 10.1155/2020/8873912
    [23]
    NGUYEN H V, XU Chao, NG S X, et al. Near-capacity wireless system design principles[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 1806–1833. doi: 10.1109/COMST.2015.2464300
    [24]
    PFLETSCHINGER S and SANZI F. Error floor removal for bit-interleaved coded modulation with iterative detection[J]. IEEE Transactions on Wireless Communications, 2006, 5(11): 3174–3181. doi: 10.1109/TWC.2006.05163
    [25]
    XIE Qiuliang, YANG Zhixing, SONG Jian, et al. EXIT-chart-matching-aided near-capacity coded modulation design and a BICM-ID design example for both Gaussian and Rayleigh channels[J]. IEEE Transactions on Vehicular Technology, 2013, 62(3): 1216–1227. doi: 10.1109/TVT.2012.2228679
    [26]
    LIU Na, LI Jianping, and CHE Qing. An impoved symbol mappings on 16qam constellation for BICM-ID[C]. 2012 International Conference on Communication, Electronics and Automation Engineering, Berlin, Germany, 2013: 175–180.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (381) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return