Citation: | CAI Yueping, REN Zhiwen. Traffic Shaping Mechanism Based on Time Slot-Aware Cyclic Queuing and Forwarding in Time-Sensitive Networking[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1999-2006. doi: 10.11999/JEIT220530 |
[1] |
NIKISHIN K and KONNOV N. Schedule time-triggered ethernet[C]. 2020 International Conference on Engineering Management of Communication and Technology, Vienna, Austria, 2020: 1–5.
|
[2] |
LI Ziyang, ZHANG Yiming, ZHAO Yunxiang, et al. Efficient semantic-aware coflow scheduling for data-parallel jobs[C]. 2016 IEEE International Conference on Cluster Computing, Taipei, China, 2016: 154–155.
|
[3] |
LI Ziyang, ZHANG Yiming, ZHAO Yunxiang, et al. Best effort task scheduling for data parallel jobs[C]. 2016 ACM SIGCOMM Conference, Florianopolis, Brazil, 2016: 555–556.
|
[4] |
FINN N. Introduction to time-sensitive networking[J]. IEEE Communications Standards Magazine, 2018, 2(2): 22–28. doi: 10.1109/MCOMSTD.2018.1700076
|
[5] |
SAHOO S, BAO Ninghai, BIGO S, et al. Deterministic dynamic network-based just-in-time delivery for distributed edge computing[C]. 2020 European Conference on Optical Communications, Brussels, Belgium, 2020: 1–4.
|
[6] |
IEEE. IEEE std 802.1QchTM-2017 IEEE standard for local and metropolitan area networks - bridges and bridged networks - amendment 29: Cyclic queuing and forwarding[S]. New York: IEEE, 2017.
|
[7] |
IEEE. IEEE Std 802.1QbvTM-2015. IEEE standard for local and metropolitan area networks - bridges and bridged networks - amendment 25: Enhancements for scheduled traffic[S]. New York: IEEE, 2016.
|
[8] |
GARDINER E. The Avnu alliance theory of operation for TSN-enabled industrial systems[J]. IEEE Communications Standards Magazine, 2018, 2(1): 5. doi: 10.1109/MCOMSTD.2018.8334911
|
[9] |
NASRALLAH A, THYAGATURU A S, ALHARBI Z, et al. Ultra-Low Latency (ULL) networks: The IEEE TSN and IETF DetNet standards and related 5G ULL research[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 88–145.
|
[10] |
MESSENGER J L. Time-sensitive networking: An introduction[J]. IEEE Communications Standards Magazine, 2018, 2(2): 29–33. doi: 10.1109/MCOMSTD.2018.1700047
|
[11] |
BIGO S, BENZAOUI N, CHRISTODOULOPOULOS K, et al. Dynamic deterministic digital infrastructure for time-sensitive applications in factory floors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(6): 6000314. doi: 10.1109/JSTQE.2021.3093281
|
[12] |
FINN N, LE BOUDEC J Y, MOHAMMADPOUR E, et al. DetNet bounded latency[EB/OL]. https://datatracker.ietf.org/doc/draft-ietf-detnet-bounded-latency/, 2022.
|
[13] |
SEAMAN M. Paternoster policing and scheduling[EB/OL]. https://grouper.ieee.org/groups/802/1/files/public/docs2017/cr-seaman-paternoster-policing-scheduling-0317-v03.pdf, 2017.
|
[14] |
YAN Jinli, WEI Quan, JIANG Xuyan, et al. Injection time planning: Making CQF practical in time-sensitive networking[C]. 2020 IEEE Conference on Computer Communications, Toronto, Canada, 2020: 616–625.
|
[15] |
HUANG Yudong, WANG Shuo, WU Binwei, et al. TACQ: Enabling zero-jitter for cyclic-queuing and forwarding in time-sensitive networks[C]. 2021 IEEE International Conference on Communications, Montreal, Canada, 2021: 1–6.
|
[16] |
WANG Guangjun, XU Caifeng, and LIU Gang. The transient electromagnetic inversion based on the simplex-simulated annealing algorithm[C]. The 37th Chinese Control Conference, Wuhan, China, 2018: 4321–4324.
|
[17] |
谢维, 关嘉欣, 周游, 等. 基于改进模拟退火算法的登机口分配问题[J]. 计算机系统应用, 2021, 30(5): 157–163. doi: 10.15888/j.cnki.csa.007903
XIE Wei, GUAN Jiaxin, ZHOU You, et al. Gate distribution problem based on improved simulated annealing algorithm[J]. Computer Systems &Applications, 2021, 30(5): 157–163. doi: 10.15888/j.cnki.csa.007903
|
[18] |
YERA Y G, LILLO R E, NIELSEN B F, et al. A bivariate two-state Markov modulated Poisson process for failure modeling[J]. Reliability Engineering & System Safety, 2021, 208: 107318. doi: 10.1016/j.ress.2020.107318
|
1. | 张艳睛,龙伟军,潘明海. 射频辐射源的高精度参数估计. 现代电子技术. 2022(15): 63-68 . ![]() | |
2. | 陈万里,李伟,柴远波. 一种低信噪比下的LFM脉冲信号起始频率校正方法. 火力与指挥控制. 2021(02): 58-63 . ![]() | |
3. | 孙同晶,刘桐,杨阳. 多阶次分数阶傅里叶域特征融合的主动声呐目标稀疏表示分类方法. 电子与信息学报. 2021(03): 809-816 . ![]() | |
4. | 李亚利,刘佳. 基于非平稳信号时频分析的DDoS攻击检测仿真. 计算机仿真. 2021(05): 353-356+370 . ![]() | |
5. | 张玉,李天琪,张进,唐波. 基于集成固有时间尺度分解的IFF辐射源个体识别算法. 电子与信息学报. 2020(02): 430-437 . ![]() | |
6. | 邬俊阳,陈欣. 基于迭代搜索的线性调频脉冲信号参数估计方法. 探测与控制学报. 2020(04): 39-46 . ![]() | |
7. | 林江刚,胡正新,李晶,翟怡萌,邓艾东. 低转速下基于AE信号与LMD的滚动轴承故障诊断. 动力工程学报. 2019(04): 293-298 . ![]() | |
8. | 刘会杰,高新海,郭汝江. 一种低副瓣无混叠的线性调频信号时频分析方法. 电子与信息学报. 2019(11): 2614-2622 . ![]() | |
9. | 林江刚,胡正新,李晶,翟怡萌,邓艾东. 基于AE信号与VMD的滚动轴承故障诊断研究. 燃气轮机技术. 2018(03): 34-38 . ![]() | |
10. | 欧国建,张淑芳,邓剑勋,蒋清平. 利用FFT实现对LFM信号的快速稀疏分解. 数据采集与处理. 2018(05): 865-871 . ![]() | |
11. | 孙湘,华钢. 生物特征信号提纯算法的设计与实现. 生物医学工程研究. 2018(04): 492-495 . ![]() | |
12. | 陈小龙,关键,黄勇,于晓涵,刘宁波,董云龙,何友. 雷达低可观测动目标精细化处理及应用. 科技导报. 2017(20): 19-27 . ![]() |