Advanced Search
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
GAO Yongsheng, TAN Jiajun, WANG Ruiqiong. Research on Microwave Frequency Shift Method Based on Photonics[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2123-2133. doi: 10.11999/JEIT220503
Citation: GAO Yongsheng, TAN Jiajun, WANG Ruiqiong. Research on Microwave Frequency Shift Method Based on Photonics[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2123-2133. doi: 10.11999/JEIT220503

Research on Microwave Frequency Shift Method Based on Photonics

doi: 10.11999/JEIT220503
Funds:  The National Natural Science Foundation of China (61701412), The Postdoctoral Innovation Talents Support Program (BX201700197), China Postdoctoral Science Foundation (2017M623238), The Key Research and Development Program of Shaanxi Province(2021GY-096)
  • Received Date: 2022-04-24
  • Accepted Date: 2022-09-06
  • Rev Recd Date: 2022-09-06
  • Available Online: 2022-09-27
  • Publish Date: 2023-06-10
  • Microwave Frequency Shift (MFS) technology is widely used in electronic countermeasures, satellite communications and frequency diverse array radar. The MFS method based on photonics has the advantages of large bandwidth and pure spectrum. In order to explore the performance, three MFS methods based on Acousto-Optic Frequency Shifter (AOFS), Sawtooth Phase Modulation (SPM) and I/Q modulation are compared in this paper. The principles of the three methods are illustrated and the corresponding verification systems are built for experiments and analysis. The results show that the three methods can achieve accurate MFS whose spurious suppression ratios are greater than 30 dB. However, the three methods simultaneously have different limitations: the operating frequency, bandwidth, and frequency shift direction of AOFS are relatively fixed which means the tunability is low; methods based on SPM and I/Q modulation have strict requirements on the input driving signal which leads to poor stability.
  • loading
  • [1]
    PENG Zhang. Realization of DRFM radar target simulator based on general instruments[C]. IET International Radar Conference 2015, Hangzhou, China, 2015: 1–8.
    [2]
    曹康, 姜成昊, 朱精果, 等. 激光多普勒移频特性研究[J]. 红外与激光工程, 2021, 50(11): 20210116. doi: 10.3788/IRLA20210116

    CAO Kang, JIANG Chenghao, ZHU Jingguo, et al. Frequency shift characteristics of laser Doppler effect[J]. Infrared and Laser Engineering, 2021, 50(11): 20210116. doi: 10.3788/IRLA20210116
    [3]
    ENGELHARDT M, PFEIFFER F, and BIEBL E. A high bandwidth radar target simulator for automotive radar sensors[C]. 2016 European Radar Conference, London, UK, 2016: 245–248.
    [4]
    JIANG Wei, ZHAO Shanghong, TAN Qinggui, et al. Wideband photonic microwave channelization and image-reject down-conversion[J]. Optics Communications, 2019, 445: 41–49. doi: 10.1016/j.optcom.2019.04.013
    [5]
    伍振海, 刘静娴, 李晓辉. 基于微波光子变频的发射频率分集阵列实现装置及方法[P]. 中国专利, 202010434080.7, 2020.

    WU Zhenhai, LIU Jingxian, and LI Xiaohui. Device and method for realizing transmit frequency diversity array based on microwave photonic frequency conversion [P]. China Patent, 202010434080.7, 2020.
    [6]
    HAO Tengfei, CEN Qizhuang, DAI Yitang, et al. Breaking the limitation of mode building time in an optoelectronic oscillator[J]. Nature Communications, 2018, 9(1): 1839. doi: 10.1038/s41467-018-04240-6
    [7]
    杨利超, 邢孟道, 孙光才, 等. 一种微波光子雷达ISAR成像新方法[J]. 电子与信息学报, 2019, 41(6): 1271–1279. doi: 10.11999/JEIT180661

    YANG Lichao, XING Mengdao, SUN Guangcai, et al. A novel ISAR imaging algorithm for microwave photonics radar[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1271–1279. doi: 10.11999/JEIT180661
    [8]
    高永胜. 微波光子混频技术[M]. 北京: 科学出版社, 2021.

    GAO Yongsheng. Photonics Microwave Mixing Technology[M]. Beijing: Science Press, 2021.
    [9]
    GREENHALGH P A, FOORD A P, and DA VIES P A. All-fibre frequency shifter using piezoceramic SAW device[J]. Electronics Letters, 1989, 25(18): 1206–1207. doi: 10.1049/el:19890809
    [10]
    DING Zhidan, YANG Fei, ZHAO Jiejun, et al. Photonic high-fidelity storage and Doppler frequency shift of broadband RF pulse signals[J]. Optics Express, 2019, 27(23): 34359–34369. doi: 10.1364/OE.27.034359
    [11]
    吴彭生, 吴冉, 魏正武, 等. 基于声光调制的微波信号多普勒移频技术[J]. 压电与声光, 2020, 42(3): 296–298.

    WU Pengsheng, WU Ran, WEI Zhengwu, et al. A microwave doppler frequency shift technology based on acousto-optic modulation[J]. Piezoelectrics &Acoustooptics, 2020, 42(3): 296–298.
    [12]
    PAGÁN V R and MURPHY T E. Electro-optic millimeter-wave harmonic downconversion and vector demodulation using cascaded phase modulation and optical filtering[J]. Optics Letters, 2015, 40(11): 2481–2484. doi: 10.1364/OL.40.002481
    [13]
    EMAMI H, SARKHOSH N, BUI L A, et al. Wideband RF photonic in-phase and quadrature-phase generation[J]. Optics Letters, 2008, 33(2): 98–100. doi: 10.1364/OL.33.000098
    [14]
    ZHU Dan, HU Xiaopeng, CHEN Wenjuan, et al. Photonics-enabled simultaneous self-interference cancellation and image-reject mixing[J]. Optics Letters, 2019, 44(22): 5541–5544. doi: 10.1364/OL.44.005541
    [15]
    LI Jianqiang, XIAO Jia, SONG Xiaoxiong, et al. Full-band direct-conversion receiver with enhanced port isolation and I/Q phase balance using microwave photonic I/Q mixer (Invited Paper)[J]. Chinese Optics Letters, 2017, 15(1): 010014. doi: 10.3788/COL201715.010014
    [16]
    JIANG Tianwei, WU Ruihuan, YU Song, et al. Microwave photonic phase-tunable mixer[J]. Optics Express, 2017, 25(4): 4519–4527. doi: 10.1364/OE.25.004519
    [17]
    LI Peixuan, PAN Wei, ZOU Xihua, et al. Image-free microwave photonic down-conversion approach for fiber-optic antenna remoting[J]. IEEE Journal of Quantum Electronics, 2017, 53(4): 9100208. doi: 10.1109/JQE.2017.2704929
    [18]
    LIN Tao, ZHAO Shanghong, ZHU Zihang, et al. Microwave photonic image rejection mixer based on a DP-QPSK modulator[J]. Journal of Modern Optics, 2017, 64(17): 1699–1707. doi: 10.1080/09500340.2017.1310321
    [19]
    HUANG Long, TANG Zhenzhou, XIANG Peng, et al. Photonic generation of equivalent single sideband vector signals for RoF systems[J]. IEEE Photonics Technology Letters, 2016, 28(22): 2633–2636. doi: 10.1109/LPT.2016.2612240
    [20]
    GAO Yongsheng, WEN Aijun, JIANG Wei, et al. Wideband photonic microwave SSB up-converter and I/Q modulator[J]. Journal of Lightwave Technology, 2017, 35(18): 4023–4032. doi: 10.1109/JLT.2017.2726532
    [21]
    GAO Yongsheng, WANG Xinyuan, WANG Wuying, et al. Wideband and low-spur Doppler simulator based on photonic microwave I/Q up-converter[C]. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), Beijing, China, 2020: 1–3.
    [22]
    JOHNSON L M and COX C H. Serrodyne optical frequency translation with high sideband suppression[J]. Journal of Lightwave Technology, 1988, 6(1): 109–112. doi: 10.1109/50.3974
    [23]
    POBEREZHSKIY I Y, BORTNIK B, CHOU J, et al. Serrodyne frequency translation of continuous optical signals using ultrawide-band electrical sawtooth waveforms[J]. IEEE Journal of Quantum Electronics, 2005, 41(12): 1533–1539. doi: 10.1109/JQE.2005.858467
    [24]
    HUANG Chongjia and CHAN E H W. Photonics-based serrodyne microwave frequency translator with large spurious suppression and phase shifting capability[J]. Journal of Lightwave Technology, 2021, 39(7): 2052–2058. doi: 10.1109/JLT.2020.3046280
    [25]
    Brimrose. Acousto-optic frequency shifter[EB/OL]. https://www.brimrose.com/free-space-ao/acousto-optic-frequency-shifters, 2021.
    [26]
    樊星, 张伟, 郭光辉, 等. 晶体与电极位置失配对声光移频器性能的影响研究[J]. 光学学报, 2021, 41(22): 2223001. doi: 10.3788/AOS202141.2223001

    FAN Xing, ZHANG Wei, GUO Guanghui, et al. Impact of position mismatch between crystal and electrode on performance of acousto-optic frequency shifter[J]. Acta Optica Sinica, 2021, 41(22): 2223001. doi: 10.3788/AOS202141.2223001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views (719) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return