Advanced Search
Volume 45 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
FENG Yan, CHEN Lan. Hardware Trojan Detection Based on Path Feature and Support Vector Machine[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1921-1932. doi: 10.11999/JEIT220500
Citation: FENG Yan, CHEN Lan. Hardware Trojan Detection Based on Path Feature and Support Vector Machine[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1921-1932. doi: 10.11999/JEIT220500

Hardware Trojan Detection Based on Path Feature and Support Vector Machine

doi: 10.11999/JEIT220500
  • Received Date: 2022-04-22
  • Rev Recd Date: 2022-09-22
  • Available Online: 2022-09-29
  • Publish Date: 2023-06-10
  • Hardware Trojan attack has become a serious threat to Integrated Circuit(IC). Hardware Trojans are hidden, rare triggered and the data-sets of Trojan benchmarks are unbalanced, a hardware Trojan detection method that performs a static analysis in gate-level netlist is presented. The path-feature based on the principle of design-for-test is proposed to simplify the analysis of feature. Based on the path-feature extracted in a circuit, the nets are classified into two groups with the Support Vector Machine (SVM) machine learning. It uses the double-weighting method of training-set to improve the performance of the classifier. Experimental results demonstrate that this method can be used to detect the suspicious nets in circuits and the ACCuracy (ACC) can achieve up to 99.85%.The static weighting method improves the performance of the classifier and the improvement of accuracy can achieve up 5.58%. Compared with the existing reference, the size of feature is only 36%, True Positive Rate (TPR) is decreased by 1.07%, True Negative Rate (TNR) is increased by 2.74% and ACC is increased by 2.92% respectively. This work verifies the efficiency of path-feature and SVM machine learning for Hardware Trojan detection and clarifies the relationship between the balance of data-sets and the detection performance.
  • loading
  • [1]
    JAIN A, ZHOU Ziqi, and GUIN U. Survey of recent developments for hardware Trojan detection[C]. 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021.
    [2]
    BHUNIA S, HSIAO M S, BANGA M, et al. Hardware Trojan attacks: Threat analysis and countermeasures[J]. Proceedings of the IEEE, 2014, 102(8): 1229–1247. doi: 10.1109/JPROC.2014.2334493
    [3]
    YANG Yipei, YE Jing, CAO Yuan, et al. Survey: Hardware Trojan detection for netlist[C]. 2020 IEEE 29th Asian Test Symposium (ATS), Penang, Malaysia, 2020: 1–6.
    [4]
    AGRAWAL D, BAKTIR S, KARAKOYUNLU D, et al. Trojan detection using IC fingerprinting[C]. 2007 IEEE Symposium on Security and Privacy (SP), Berkeley, USA, 2007: 296–310.
    [5]
    JIN Yier and MAKRIS Y. Hardware Trojan detection using path delay fingerprint[C]. 2008 IEEE International Workshop on Hardware-Oriented Security and Trust, Anaheim, USA, 2008.
    [6]
    HUANG Zhao, WANG Quan, CHEN Yin, et al. A survey on machine learning against hardware Trojan attacks: Recent advances and challenges[J]. IEEE Access, 2020, 8: 10796–10826. doi: 10.1109/ACCESS.2020.2965016
    [7]
    SHARMA R and RANJAN P. A review: Machine learning based hardware Trojan detection[C]. 2021 10th International Conference on Internet of Everything, Microwave Engineering, Communication and Networks (IEMECON), Jaipur, India, 2021.
    [8]
    KUNDU S, MENG Xingyu, and BASU K. Application of machine learning in hardware Trojan detection[C]. 2021 22nd International Symposium on Quality Electronic Design(ISQED), Santa Clara, USA, 2021: 414–419.
    [9]
    HASEGAWA K, OYA M, YANAGISAWA M, et al. Hardware Trojans classification for gate-level netlists based on machine learning[C]. 2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS), Sant Feliu de Guixols, Spain, 2016: 203–206.
    [10]
    HASEGAWA K, YANAGISAWA M, and TOGAWA N. A hardware-Trojan classification method using machine learning at gate-level netlists based on Trojan features[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100.A(7): 1427–1438. doi: 10.1587/transfun.E100.A.1427
    [11]
    HASEGAWA K, YANAGISAWA M, and TOGAWA N. Trojan-feature extraction at gate-level netlists and its application to hardware-Trojan detection using random forest classifier[C]. 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, USA, 2017: 1–4.
    [12]
    HASEGAWA K, YANAGISAWA M, and TOGAWA N. Hardware Trojans classification for gate-level netlists using multi-layer neural networks[C]. 2017 IEEE 23rd International Symposium on On-Line Testing and Robust System Design (IOLTS), Thessaloniki, Greece, 2017: 227–232.
    [13]
    HASEGAWA K, YANAGISAWA M, and TOGAWA N. A hardware-Trojan classification method utilizing boundary net structures[C]. 2018 IEEE International Conference on Consumer Electronics, Las Vegas, USA, 2018: 1–4.
    [14]
    SALMANI H. Cotd: Reference-free hardware Trojan detection and recovery based on controllability and observability in gate-level netlist[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(2): 338–350. doi: 10.1109/TIFS.2016.2613842
    [15]
    GOLDSTEIN L H and THIGPEN E L. SCOAP: Sandia controllability/observability analysis program[C]. 17th Design Automation Conference, Minneapolis, USA, 1980: 190–196.
    [16]
    XIE Xin, SUN Yangyang, CHEN Hongda, et al. Hardware Trojans classification based on controllability and observability in gate-level netlist[J]. IEICE Electronics Express, 2017, 14(18): 20170682. doi: 10.1587/elex.14.20170682
    [17]
    PRIYADHARSHINI M and SARAVANAN P. An efficient hardware Trojan detection approach adopting testability based features[C]. 2020 IEEE International Test Conference India, Bangalore, India, 2020.
    [18]
    LIU Qiang, ZHAO Pengyong, and CHEN Fuqiang. A hardware Trojan detection method based on structural features of Trojan and host circuits[J]. IEEE Access, 2019, 7: 44632–44644. doi: 10.1109/access.2019.2908088
    [19]
    严迎建, 赵聪慧, 刘燕江. 基于多维结构特征的硬件木马检测技术[J]. 电子与信息学报, 2021, 43(8): 2128–2139. doi: 10.11999/JEIT210003

    YAN Yingjian, ZHAO Conghui, and LIU Yanjiang. Hardware Trojan detection based on multiple structural features[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2128–2139. doi: 10.11999/JEIT210003
    [20]
    PARKER K P and MCCLUSKEY E J. Probabilistic treatment of general combinational networks[J]. IEEE Transactions on Computers, 1975, C-24(6): 668–670. doi: 10.1109/T-C.1975.224279
    [21]
    Trust-Hub. Trust-Hub benchmarks[EB/OL]. https://www.trust-hub.org/, 2018.
    [22]
    YU Shichao, GU Chongyan, LIU Weiqiang, et al. Deep Learning-based hardware Trojan detection with block-based Netlist information extraction[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(4): 1837–1853. doi: 10.1109/TETC.2021.3116484
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(9)

    Article Metrics

    Article views (682) PDF downloads(163) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return