Citation: | FENG Yan, CHEN Lan. Hardware Trojan Detection Based on Path Feature and Support Vector Machine[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1921-1932. doi: 10.11999/JEIT220500 |
[1] |
JAIN A, ZHOU Ziqi, and GUIN U. Survey of recent developments for hardware Trojan detection[C]. 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021.
|
[2] |
BHUNIA S, HSIAO M S, BANGA M, et al. Hardware Trojan attacks: Threat analysis and countermeasures[J]. Proceedings of the IEEE, 2014, 102(8): 1229–1247. doi: 10.1109/JPROC.2014.2334493
|
[3] |
YANG Yipei, YE Jing, CAO Yuan, et al. Survey: Hardware Trojan detection for netlist[C]. 2020 IEEE 29th Asian Test Symposium (ATS), Penang, Malaysia, 2020: 1–6.
|
[4] |
AGRAWAL D, BAKTIR S, KARAKOYUNLU D, et al. Trojan detection using IC fingerprinting[C]. 2007 IEEE Symposium on Security and Privacy (SP), Berkeley, USA, 2007: 296–310.
|
[5] |
JIN Yier and MAKRIS Y. Hardware Trojan detection using path delay fingerprint[C]. 2008 IEEE International Workshop on Hardware-Oriented Security and Trust, Anaheim, USA, 2008.
|
[6] |
HUANG Zhao, WANG Quan, CHEN Yin, et al. A survey on machine learning against hardware Trojan attacks: Recent advances and challenges[J]. IEEE Access, 2020, 8: 10796–10826. doi: 10.1109/ACCESS.2020.2965016
|
[7] |
SHARMA R and RANJAN P. A review: Machine learning based hardware Trojan detection[C]. 2021 10th International Conference on Internet of Everything, Microwave Engineering, Communication and Networks (IEMECON), Jaipur, India, 2021.
|
[8] |
KUNDU S, MENG Xingyu, and BASU K. Application of machine learning in hardware Trojan detection[C]. 2021 22nd International Symposium on Quality Electronic Design(ISQED), Santa Clara, USA, 2021: 414–419.
|
[9] |
HASEGAWA K, OYA M, YANAGISAWA M, et al. Hardware Trojans classification for gate-level netlists based on machine learning[C]. 2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS), Sant Feliu de Guixols, Spain, 2016: 203–206.
|
[10] |
HASEGAWA K, YANAGISAWA M, and TOGAWA N. A hardware-Trojan classification method using machine learning at gate-level netlists based on Trojan features[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100.A(7): 1427–1438. doi: 10.1587/transfun.E100.A.1427
|
[11] |
HASEGAWA K, YANAGISAWA M, and TOGAWA N. Trojan-feature extraction at gate-level netlists and its application to hardware-Trojan detection using random forest classifier[C]. 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, USA, 2017: 1–4.
|
[12] |
HASEGAWA K, YANAGISAWA M, and TOGAWA N. Hardware Trojans classification for gate-level netlists using multi-layer neural networks[C]. 2017 IEEE 23rd International Symposium on On-Line Testing and Robust System Design (IOLTS), Thessaloniki, Greece, 2017: 227–232.
|
[13] |
HASEGAWA K, YANAGISAWA M, and TOGAWA N. A hardware-Trojan classification method utilizing boundary net structures[C]. 2018 IEEE International Conference on Consumer Electronics, Las Vegas, USA, 2018: 1–4.
|
[14] |
SALMANI H. Cotd: Reference-free hardware Trojan detection and recovery based on controllability and observability in gate-level netlist[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(2): 338–350. doi: 10.1109/TIFS.2016.2613842
|
[15] |
GOLDSTEIN L H and THIGPEN E L. SCOAP: Sandia controllability/observability analysis program[C]. 17th Design Automation Conference, Minneapolis, USA, 1980: 190–196.
|
[16] |
XIE Xin, SUN Yangyang, CHEN Hongda, et al. Hardware Trojans classification based on controllability and observability in gate-level netlist[J]. IEICE Electronics Express, 2017, 14(18): 20170682. doi: 10.1587/elex.14.20170682
|
[17] |
PRIYADHARSHINI M and SARAVANAN P. An efficient hardware Trojan detection approach adopting testability based features[C]. 2020 IEEE International Test Conference India, Bangalore, India, 2020.
|
[18] |
LIU Qiang, ZHAO Pengyong, and CHEN Fuqiang. A hardware Trojan detection method based on structural features of Trojan and host circuits[J]. IEEE Access, 2019, 7: 44632–44644. doi: 10.1109/access.2019.2908088
|
[19] |
严迎建, 赵聪慧, 刘燕江. 基于多维结构特征的硬件木马检测技术[J]. 电子与信息学报, 2021, 43(8): 2128–2139. doi: 10.11999/JEIT210003
YAN Yingjian, ZHAO Conghui, and LIU Yanjiang. Hardware Trojan detection based on multiple structural features[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2128–2139. doi: 10.11999/JEIT210003
|
[20] |
PARKER K P and MCCLUSKEY E J. Probabilistic treatment of general combinational networks[J]. IEEE Transactions on Computers, 1975, C-24(6): 668–670. doi: 10.1109/T-C.1975.224279
|
[21] |
Trust-Hub. Trust-Hub benchmarks[EB/OL]. https://www.trust-hub.org/, 2018.
|
[22] |
YU Shichao, GU Chongyan, LIU Weiqiang, et al. Deep Learning-based hardware Trojan detection with block-based Netlist information extraction[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(4): 1837–1853. doi: 10.1109/TETC.2021.3116484
|