Citation: | LIANG Liming, ZHAN Tao, LEI Kun, FENG Jun, TAN Lumin. Multi-resolution Fusion Input U-shaped Retinal Vessel Segmentation Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1795-1806. doi: 10.11999/JEIT220470 |
[1] |
王娟, 赵建勇, 童龙. 老年2型糖尿病患者并发周围神经病变的影响因素分析[J]. 中国慢性病预防与控制, 2019, 27(1): 52–54. doi: 10.16386/j.cjpccd.issn.1004-6194.2019.01.014
WANG Juan, ZHAO Jianyong, and TONG Long. Analysis of the influencing factors of peripheral neuropathy in elderly patients with type 2 diabetes[J]. China Journal of Chronic Disease Prevention and Control, 2019, 27(1): 52–54. doi: 10.16386/j.cjpccd.issn.1004-6194.2019.01.014
|
[2] |
YU Linfang, QIN Zhen, ZHUANG Tianming, et al. A framework for hierarchical division of retinal vascular networks[J]. Neurocomputing, 2020, 392: 221–232. doi: 10.1016/j.neucom.2018.11.113
|
[3] |
KHAWAJA A, KHAN T M, KHAN M A U, et al. A multi-scale directional line detector for retinal vessel segmentation[J]. Sensors, 2019, 19(22): 4949. doi: 10.3390/s19224949
|
[4] |
KHAWAJA A, KHAN T M, NAVEEDK, et al. An improved retinal vessel segmentation framework using frangi filter coupled with the probabilistic patch based denoiser[J]. IEEE Access, 2019, 7: 164344–164361. doi: 10.1109/access.2019.2953259
|
[5] |
田丰, 李莹, 王静. 基于多尺度小波变换融合的视网膜血管分割[J]. 光学学报, 2021, 41(4): 0410001. doi: 10.3788/AOS202141.0410001
TIAN Feng, LI Ying, and WANG Jing. Retinal blood vessel segmentation based on multi-scale wavelet transform fusion[J]. Acta Optica Sinica, 2021, 41(4): 0410001. doi: 10.3788/AOS202141.0410001
|
[6] |
梁礼明, 盛校棋, 蓝智敏, 等. 基于多尺度滤波的视网膜血管分割算法[J]. 计算机应用与软件, 2019, 36(10): 190–196,204. doi: 10.3969/j.issn.1000-386x.2019.10.033
LIANG Liming, SHENG Xiaoqi, LAN Zhimin, et al. Retinal vessels segmentation algorithom based on multi-scale filtering[J]. Computer Applications and Software, 2019, 36(10): 190–196,204. doi: 10.3969/j.issn.1000-386x.2019.10.033
|
[7] |
YANG Xin, LI Zhiqiang, GUO Yingqing, et al. DCU-Net: A deformable convolutional neural network based on cascade U-net for retinal vessel segmentation[J]. Multimedia Tools and Applications, 2022, 81(11): 15593–15607. doi: 10.1007/s11042-022-12418-w
|
[8] |
CHEN Yixuan, DONG Yuhan, ZHANG Yi, et al. RNA-Net: Residual nonlocal attention network for retinal vessel segmentation[C]. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, Canada, 2020: 1560–1565.
|
[9] |
WANG Dongyi, HAYTHAM A, POTTENBURGH J, et al. Hard attention net for automatic retinal vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(12): 3384–3396. doi: 10.1109/jbhi.2020.3002985
|
[10] |
ZHANG Yuan, HE Miao, CHEN Zhineng, et al. Bridge-Net: Context-involved U-net with patch-based loss weight mapping for retinal blood vessel segmentation[J]. Expert Systems with Applications, 2022, 195: 116526. doi: 10.1016/j.eswa.2022.116526
|
[11] |
IBTEHAZ N and RAHMAN M S. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation[J]. Neural Networks, 2020, 121: 74–87. doi: 10.1016/j.neunet.2019.08.025
|
[12] |
ZHANG Hang, WU Chongruo, ZHANG Zhongyue, et al. ResNeSt: Split-attention networks[EB/OL]. https://arxiv.org/abs/2004.08955, 2022.
|
[13] |
LI Di, DHARMAWAN D A, NG B P, et al. Residual U-Net for retinal vessel segmentation[C]. 2019 IEEE International Conference on Image Processing (ICIP), Taipei, China, 2019: 1425–1429.
|
[14] |
ZHOU Tianyan, ZHAO Yong, and WU Jian. ResNeXt and Res2Net structures for speaker verification[C]. 2021 IEEE Spoken Language Technology Workshop (SLT), Shenzhen, China, 2021: 301–307.
|
[15] |
HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
|
[16] |
WANG Chang, ZHAO Zongya, REN Qiongqiong, et al. Dense U-net based on patch-based learning for retinal vessel segmentation[J]. Entropy, 2019, 21(2): 168. doi: 10.3390/e21020168
|
[17] |
HU Peijun, LI Xiang, TIAN Yu, et al. Automatic pancreas segmentation in CT images with distance-based saliency-aware DenseASPP network[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(5): 1601–1611. doi: 10.1109/jbhi.2020.3023462
|
[18] |
ABRAHAM N and KHAN N M. A novel focal tversky loss function with improved attention U-Net for lesion segmentation[C]. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 2019: 683–687.
|
[19] |
ZHANG Guokai, SHEN Xiaoang, CHEN Sirui, et al. DSM: A deep supervised multi-scale network learning for skin cancer segmentation[J]. IEEE Access, 2019, 7: 140936–140945. doi: 10.1109/access.2019.2943628
|
[20] |
STAAL J, ABRAMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501–509. doi: 10.1109/tmi.2004.825627
|
[21] |
HOOVER A D, KOUZNETSOVA V, and GOLDBAUM M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J]. IEEE Transactions on Medical Imaging, 2000, 19(3): 203–210. doi: 10.1109/42.845178
|
[22] |
OWEN C G, RUDNICKA A R, MULLEN R, et al. Measuring retinal vessel tortuosity in 10-year-old children: Validation of the computer-assisted image analysis of the retina (CAIAR) program[J]. Investigative Ophthalmology & Visual Science, 2009, 50(5): 2004–2010. doi: 10.1167/iovs.08-3018
|
[23] |
ALOM Z, HASAN M, YAKOPCIC C, et al. Recurrent residual convolutional neural network based on U-Net (R2u-Net) for medical image segmentation[EB/OL]. https://arxiv.org/abs/1802.06955, 2018.
|
[24] |
ZHOU Zongwei, SIDDIQUEE M R, TAJBAKHSH N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856–1867. doi: 10.1109/tmi.2019.2959609
|
[25] |
YU Changqian, XIAO Bin, GAO Changxin, et al. Lite-HRNet: A lightweight high-resolution network[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10435–10445.
|
[26] |
ZHUANG Juntang. LadderNet: Multi-path networks based on U-Net for medical image segmentation[EB/OL]. https://arxiv.org/abs/1810.07810, 2018.
|
[27] |
LI Di and RAHARDJA S. BSEResU-Net: An attention-based before-activation residual U-Net for retinal vessel segmentation[J]. Computer Methods and Programs in Biomedicine, 2021, 205: 106070. doi: 10.1016/j.cmpb.2021.106070
|
[28] |
JIN Qiangguo, MENG Zhaopeng, PHAM T D, et al. DUNet: A deformable network for retinal vessel segmentation[J]. Knowledge-Based Systems, 2019, 178: 149–162. doi: 10.1016/j.knosys.2019.04.025
|
[29] |
LI Xiang, JIANG Yuchen, LI Minglei, et al. Lightweight attention convolutional neural network for retinal vessel image segmentation[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3): 1958–1967. doi: 10.1109/tii.2020.2993842
|
[30] |
LV Yan, MA Hui, LI Jianian, et al. Attention guided U-Net with atrous convolution for accurate retinal vessels segmentation[J]. IEEE Access, 2020, 8: 32826–32839. doi: 10.1109/access.2020.2974027
|
[31] |
YUAN Yuchen, ZHANG Lei, WANG Lituan, et al. Multi-level attention network for retinal vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(1): 312–323. doi: 10.1109/jbhi.2021.3089201
|